\qquad

UNIVERSITY OF CALIFORNIA Electrical Engineering and Computer Sciences

EECS 145L Electronic Transducer Lab
MIDTERM \#1 (100 points maximum)
(closed book, calculators OK)
(You will not receive full credit if you do not show your work)

PROBLEM 1 (30 points)

Design an op-amp circuit with the following characteristics

- Voltage gain $=100$ from d.c. to $10^{4} \mathrm{~Hz}$
- Input impedance $>100 \mathrm{M} \Omega$
- Circuit resistor values are in the range from $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$

Assume the following:

- You have an op-amp whose open loop gain-frequency product is $10^{7} \mathrm{~Hz}$
- You can neglect the op-amp input leakage currents
- The op-amp input impedances are >1Gת
1.a. (15 points) Sketch your circuit, showing the op-amp and all resistors
b. (15 points) Sketch the voltage gain of your circuit from 10 Hz to 100 MHz in the figure below

PROBLEM 2 (10 points)

Design a Butterworth low-pass filter that has a voltage gain >0.99 for frequencies below 10 kHz and a voltage gain <0.001 for frequencies above 21 kHz . (Hint: refer to the filter gain table on the equation sheet)
What is the approximate corner frequency f_{c} and the order n of the filter?

PROBLEM 3 (60 points)

Design a circuit that uses Johnson noise in a resistor to measure absolute temperature
The design requirements are:

- Output voltage proportional to absolute temperature over the range from 100 K to 1000 K output $=0.100 \mathrm{~V}$ at $100 \mathrm{~K}, 1.00 \mathrm{~V}$ at 1000 K
- The output varies slowly, responding to temperature change frequencies $<1 \mathrm{~Hz}$.

Your circuit consists of the following elements:

- A $1 \mathrm{M} \Omega$ resistor with an accurate resistance from 100 K to 1000 K
- Two wires (twisted pair) from the ends of the $1 \mathrm{M} \Omega$ resistor to the input of an instrumentation amplifier (below). The wires pick up 60 Hz electromagnetic interference with a common mode voltage of $\pm 100 \mathrm{mV}$ and $\pm 1 \mathrm{mV}$ diferential.
- An instrumentation amplifer circuit with a gain of 426 and a bandwidth of 1 MHz . To simplify the problem, ignore leakage currents.
- A circuit whose output (in volts) is equal to the square of the input (in volts).

- Any additional filtering or amplification needed, using circuits covered in EECS 145M. For filters you only need to specify type, order n, and corner frequency f_{c}. For amplifiers, specify gain.

Hint: The Johnson noise on a $1 \mathrm{M} \Omega$ resistor in a 1 MHz bandwidth is given by
$V_{\mathrm{rms}}=\sqrt{4 k T R \Delta f}=7.43 \mu V \sqrt{T}$
For $T=100^{\circ} \mathrm{K}$, and $1000^{\circ} \mathrm{K}, \mathrm{V}_{\text {rms }}=74.3 \mu \mathrm{~V}$, and $235 \mu \mathrm{~V}$.

Do the following:

a. (20 points) Sketch a block diagram of your circuit in enough detail so that a skilled technician can build it and understand how it meets the design objectives.
b. (5 points) Sketch the differential input to the instrumentation amplifier when the resistor is at $1000^{\circ} \mathrm{K}$ (label both voltage and time axes).

c. (5 points) Sketch the common mode input to the instrumentation amplifier when the resistor is at $1000{ }^{\circ} \mathrm{K}$ (label both voltage and time axes).

d. (5 points) Sketch the output of the instrumentation amplifier when the resistor is at $1000{ }^{\circ} \mathrm{K}$ (label both voltage and time axes).

e. (5 points) Sketch the input to the voltage-squaring amplifier when the resistor is at $1000{ }^{\circ} \mathrm{K}$ (label both voltage and time axes).
$V \begin{array}{ll}V & 0 \\ \\ \\ \\ & t\end{array}$
f. (5 points) Sketch the output of the voltage-squaring amplifier when the resistor is at $1000{ }^{\circ} \mathrm{K}$ (label both voltage and time axes).

g. (5 points) Sketch the output of your entire circuit while the resistor temperature is changed from 1000 to $500^{\circ} \mathrm{K}$ in 0.1 s (label both voltage and time axes).
$V \begin{array}{ll}V & 0 \\ \\ \\ \\ \\ \\ \end{array}$

