EECS 117A, Fall 1998 Midterm #2 Professor S.E. Schwarz

Problem #1 (40 points)

$$b_2 = S_{21}a_1 + S_{22}a_2$$

We want the four S-parameters for the block shown above. Use the notation shown. The reference impedance is 50 ohms.

(a) Find S_{11}

(b) Find S_{22}

(c) Find S₂₁

(d) Find S_{12}

Problem #2 (30 points)

Consider a thin, rigid, spherical shell of material centered at the origin. The shell occupies the space between r = a and r = a+h, and you should assume $h \ll a$. The shell has a uniform charge density **rho**, and it rotates around the polar axis (or z-axis) with angular velocity **omega** radians/sec. Find the magnitude $|\mathbf{H}|$ of the magnetic field at the origin.

(If you happen to get an integral that you can't evaluate, just leave it in the form of an integral.)

Problem #3 (30 points)

The boundary between two electrically conductive materials lies in the x = 0 plane. Material 1 has epsilon₁,sigma_{E1},mu₁ and material 2 has epsilon₂,sigma_{E2},mu₂. Let epsilon₂ = 2epsilon₁, sigma_{E2} = 3sigma_{E1}, mu₂ = 5mu₁. There is an electrostatic field E₁ in Region 1, which makes an angle of 45° with the normal to the interface, as shown. Find theta₂, the angle between the electrostatic field and the normal on the right side of the boundary.

Answer: theta = _____ degrees

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu