EECS 117A, Fall 1998
 Midterm \#2
 Professor S.E. Schwarz

Problem \#1 (40 points)

$$
\begin{aligned}
& b_{1}=S_{11} a_{1}+S_{12} a_{2} \\
& b_{2}=S_{21} a_{1}+S_{22} a_{2}
\end{aligned}
$$

We want the four S-parameters for the block shown above. Use the notation shown. The reference impedance is 50 ohms.
(a) Find S_{11}
(b) Find S_{22}
(c) Find S_{21}
(d) Find S_{12}

Problem \#2 (30 points)

Consider a thin, rigid, spherical shell of material centered at the origin. The shell occupies the space between $\mathrm{r}=\mathrm{a}$ and $\mathrm{r}=\mathrm{a}+\mathrm{h}$, and you should assume $\mathrm{h} \ll \mathrm{a}$. The shell has a uniform charge density rho, and it rotates around the polar axis (or z-axis) with angular velocity omega radians/sec. Find the magnitude $|\mathbf{H}|$ of the magnetic field at the origin.
(If you happen to get an integral that you can't evaluate, just leave it in the form of an integral.)

Problem \#3 (30 points)

The boundary between two electrically conductive materials lies in the $\mathrm{x}=0$ plane. Material 1 has epsilon $_{1}$, sigma $_{\mathrm{E} 1}, \mathbf{m u}_{1}$ and material 2 has epsilon ${ }_{2}$, sigma $_{\mathrm{E} 2}, \mathbf{m u}_{2}$. Let epsilon $_{2}=2$ epsilon $_{1}$, sigma $_{\mathrm{E} 2}=$ 3 sigma $_{\mathrm{E} 1}, \mathbf{m u}_{2}=5 \mathbf{m u}_{1}$. There is an electrostatic field E_{1} in Region 1, which makes an angle of 45° with the normal to the interface, as shown. Find theta ${ }_{2}$, the angle between the electrostatic field and the normal on the right side of the boundary.

Answer: theta $=$ \qquad degrees

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

