EE117A SOLUTION -- Fall1997

Electromagnetic Field and Waves

Wed, Oct 29, 1997
Costas J. Spanos
NOTE: This solution is from a student who got $30 / 30,30 / 35$, and $35 / 35$, that is total 95 out of 100 .

PROBLEM 1 OF 3 (30 Points)

State (in words) the Gauss theorem (7pts)

The flux of electric field, if integrated over a surface that enclosed a volume, equals to the total of charge enclosed by that volume divided by the dielectric (E) of material which \mathbf{E} (of interest) is in.

What is the differential form of Ampere theorem? (7pts)
the cross product of gradient vector and H vector equals to J vector, that is gradient(Vector) $\mathrm{XH} \mathrm{H}($ Vector $)=\mathrm{J}$ (Vector)

What is an "irrotationl" field? (6pts)

The Field $\mathrm{F}($ Vector) is irrotational when the cross product of gradient(Vector) and F (Vector) equals to zero, that is gradient (Vector) $\mathrm{XF}($ Vector $)=0$. (This case is usually true for static \mathbf{E} Field.)

An infinite surface on the y -z plain has a charge density of $1 \mathrm{Cb} / \mathrm{m}^{2}$.
Plot the intensity of the E field and the potential (referenced to infinity) as a function of x, when $\mathrm{x}>0$ and $E_{0}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}(10 \mathrm{pts})$

$$
\mathbf{E}=\text { Sigma } /\left(2 * \text { Epsilon }_{\mathrm{o}}\right)=1 /(@ * 8.854 \mathrm{E}-10)=5.65 \mathrm{E} 10
$$

Note: the value of slope in the graph can be wrong.

PROBLEM 2 OF 3 (35 points)

a) Dielectric lenses can be used to collimate electromagnetic fields. In the figure below, the left surface of the dielectric lens if that of a circular cylinder, and the right surface is a plane. If E_{1} at point $\mathbf{P}\left(\mathrm{r}_{\mathrm{o}}, 45^{\circ}\right.$, z) in region 1 is $e_{r} 5-e_{\text {phi }}$, what must be the dielectric constant of the lens in order the E_{1} order the E_{3} in region 3 is parallel to the x -axis? (15 points)

$\mathrm{E}_{\mathrm{r}} \cos 45=\mathrm{E}_{\mathrm{phi}} \sin 45$
$E_{2}\left(\mathrm{E}_{\mathrm{r}} \sin 45\right)+E_{2}\left(\mathrm{E}_{\mathrm{phi}} \cos 45\right)=E_{3} \mathrm{E}_{3}=E_{\mathrm{o}} \mathrm{E}_{3}$
$E_{2}\left(\mathrm{E}_{\mathrm{r}} / \mathrm{sqrt}(2)+\mathrm{E}_{\mathrm{phi}} / \mathrm{sqrt}(2)\right)=E_{\mathrm{o}} \mathrm{E}_{3}$
Note: This problem scored 10/15.
Note2: E means Epsilon.
b) How much energy do you need to bring 1 Cb of point charge from infinity to a point 0.5 meters away from an infinite conducting plane in vacuum? (20 points)

This problem is equivalent to the problem of having an opposite charge located at the mirror position.
Find the energy of this assembling form.
$\mathrm{W}=.5$ * sumation of(Sigma) QV
$=.5\left(\mathrm{Q}_{1} \mathrm{~V}_{1}+\mathrm{Q}_{2} \mathrm{~V}_{2}\right)$
$=.5\left(\left(-1^{*} 1\right) /\left(4^{*} \mathrm{pi}^{*} E_{\mathrm{o}}\right)+\left(-1^{*} 1\right) /\left(4^{*} \mathrm{p}{ }^{*} E_{\mathrm{o}}\right)\right)$
$=(-1 * 1) /\left(4 * \mathrm{pi}^{*} E_{\mathrm{o}}\right)=(-1 * 1) /(4 * \mathrm{pi} * 8.854 \mathrm{E}-12)=-8.99 \mathrm{x} 10^{9} \mathrm{~J}$

PROBLEM 3 OF 3 (35 points) A d-c current $\mathrm{I}=10 \mathrm{~A}$ flows in a triangular loop in the xy-plane as is shown below. Assuming a uniform magnetic flux density $\mathbf{B}=\mathrm{e}_{\mathrm{y}} 6(\mathrm{mT})$ in the region, find the forces and torque on the loop. $\left(\mathrm{Mu}=4^{*} \mathrm{Pi}^{*} 10^{-7} \mathrm{H} / \mathrm{m}\right)$

Force on Segment S1:
$\mathrm{F}=\mathrm{I} * \mathrm{dl}($ Vector $) \mathrm{XB}$ (Vector $)=\mathrm{ILB} \sin ($ theta $)=10 * 10 \operatorname{sqrt}(5) * 6 \mathrm{E}-3 *(1 / \mathrm{sqrt}(5))=0.6 \mathrm{~N}$ Direction: comes out of the paper

Force on Segment S2:

$\mathrm{F}=\mathrm{I} * \mathrm{dl}($ Vector $) \mathrm{XB}$ (Vector $)=\mathrm{ILB} \sin ($ theta $)=10 * 20 * 6 \mathrm{E}-3=1.2 \mathrm{~N}$
Direction: go through the paper
Force on Segment S3:
$\mathrm{F}=\mathrm{I} * \mathrm{dl}($ Vector $) \mathrm{X}$ B(Vector) $=\mathrm{ILB} \sin ($ theta $)=10 * 10 \operatorname{sqrt}(5) * 6 \mathrm{E}-3 *(1 / \mathrm{sqrt}(5))=0.6 \mathrm{~N}$ Direction: comes out of the paper

Total Force and Total Torque:
Total force $=1.2-0.6-0.6=0 \mathrm{~N}$
Total torque $=\mathrm{F}($ Vector $) \mathrm{XL}($ Vector $)=1.2 \times 20=24 \mathrm{Nm}$

