This is an open book exam. Calculators are allowed. Please show your work clearly if you wish to receive partial credit. Good Luck!
(30 pts)

1. Consider the following discrete-time system
a) Give the transfer function $\mathrm{H}(\mathrm{z})$ of this system, and sketch the magnitude response $\left|\mathrm{H}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)\right|$. What is the phase behavior (linear, minimum, maximum, or arbitrary phase)?
(6 pts)
b. Find a casual and stable inverse filter $\mathrm{G}(\mathrm{z})$ such that $\mathrm{H}(\mathrm{z}) \mathrm{G}(\mathrm{z})$ has a flat magnitude response, or
$\left|H\left(e^{\wedge} j w\right) G\left(e^{\wedge} j w\right)\right|=1$
(6 pts)
c. Is $\mathrm{G}(\mathrm{z})$ above unique ? If not, give another solution.
(6 pts)
d. Find a causal and stable filter $\mathrm{F}(\mathrm{z})$ such that $\mathrm{H}(\mathrm{z}) \mathrm{F}(\mathrm{z})$ has linear phase (that is, its impulse response is either symmetric or antisymmetric). If there is more than one solution, pick the one that minimizes the degree of $\mathrm{H}(\mathrm{z}) \mathrm{F}(\mathrm{z})$.
(6 pts)
e. Same as (d) above, but restrict $\mathrm{F}(\mathrm{z})$ to be an FIR filter. Give a minimum degree solution, as well as a non-minimum degree one.
(35 pts)
2. Consider zero phase type I filters with real coefficients, that is, filters that are symmetric round the origin and have $\mathrm{N}=2 \mathrm{~L}+$ 1 real valued taps.
(10 pts)
a. Assume the filter has a z-transform $H(z)=z+3 / 2+z^{\wedge}-1$. Show that this filter is an optimum minimax design for a lowpass
filter with desired response
$\operatorname{Hd}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)=3 ; 0<=\mathrm{w}<=\mathrm{w}(\mathrm{p})$
$0 ; \mathrm{w}(\mathrm{s})<=\mathrm{w}<=\pi$
and maximum error $\delta=1 / 2$
In particular, indicate:
i. What are $\mathrm{w}(\mathrm{p})$ and $\mathrm{w}(\mathrm{s})$?
ii. What are the alternation frequencies?
iii. Is this an "extraripple" solution? (Hint: Plot $\mathrm{H}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right)$ for $0<=\mathrm{w}<=\pi$.)
(10 pts)
b. From $\mathrm{H}(\mathrm{z})$, devise a new filter $\mathrm{G}(\mathrm{z})=\mathrm{H}(\mathrm{z})+\delta$
i. Show that $G\left(e^{\wedge} \mathrm{jw}\right)>=0$, and for what $w o, G\left(\mathrm{e}^{\wedge} \mathrm{jwo}\right)=0$.
ii. Because $\mathrm{G}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)>=0, \mathrm{G}(\mathrm{z})$ can be factored as
$G(z)=R(z) R\left(z^{\wedge}-1\right)$.
Given $\mathrm{R}(\mathrm{z})$ in this case.
(10 pts)
c. Assume a half band lowpass filter $\mathrm{F}(\mathrm{z})$ designed with the Parks-Ms-Clellan algorithm. Assume further that $\mathrm{N}=9$ and that it has half the alternation in the pass band $(0 \ldots .0 .4 \pi)$ and the other hapf in the stop band $(0.6 \pi \ldots \ldots . \pi)$. From this filter, derive $\operatorname{Fp}(z)=F(z)+\delta$, where δ is mazimum error in the stopband. Sketch $\operatorname{Fp}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$ for $0<=\mathrm{w}<=\pi$.
(5 pts)
d. In part (b), we stated that if $G(z)$ is such that $G\left(e^{\wedge} j w\right)>=0$, then $G(z)=R(z) R\left(z^{\wedge}-1\right)$. Show the converse, namely that if G $(z)=R(z) R\left(z^{\wedge}-1\right)$, then necessarily $G\left(e^{\wedge} j w\right)>=0$.
(35 pts)
3. Consider a continuous time filter with impulse response
$\mathrm{hc}(\mathrm{t})=1 ;|\mathrm{t}|<=\tau$
0 ; otherwise
The Fourier Transform of $h c(t)$ is a sinc function given by the formula
$\operatorname{Hc}(\mathrm{j} \Omega)=2 \sin \Omega \tau / \Omega$
For parts a-d below, consider applying the bilinear transformation to $\mathrm{Hc}(\mathrm{j} \Omega)$ to derive a discrete time filter $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$. Use $\mathrm{Td}=\tau$ / M.
a. Find an expression for he zeros of $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$. Sketch $\mathrm{H}(\mathrm{b})\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$.
(5 pts)
b. At what frequency $\mathrm{w}(\mathrm{p})$ does $\left|\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right)\right|$ evluated at $(\mathrm{w}=\mathrm{w}(\mathrm{P}))=$

$$
2 / \pi * \max \left|\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)\right| ?
$$

(5 pts)
c. Find the width (in radians) of the main lobe of $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{j} \mathrm{w}\right)$. The main lobe is the lobe centered around $\mathrm{w}=0$ and the width refers to the distance betwen the zeris flanking the main lobe.
(5 pts)
d. Using the characteristics of $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$ and the properties of the DTFT, determine if the discrete time impulse response hb [n] is (1) FIR; (2) symmetric; (3) stable; (4) causal; (5) real. (explain your answers.)

For parts e -f below, consider applying impulse invariance to $\mathrm{Hc}(\mathrm{j} \Omega)$ to derive a discrete time filter $\mathrm{Hi}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$. Again use $\mathrm{Td}=\tau /$ M. Suggestion: Do this in the frequency domain.
(8 pts)
e. Are there any frequencies at which aliasing does not affect the resultant filter $\mathrm{Hi}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$? If so, find them. In other words, determine any values of w for which
$\mathrm{Hi}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)=\mathrm{Hc}(\mathrm{j} w / \mathrm{Td})$.
(7 pts)
f) Sketch $\mathrm{Hi}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$ and find the width of the main lobe.

EE123 Solution

Problem1

a. $\mathrm{H}(\mathrm{z})=1+7 / 2 \mathrm{Z}^{\wedge}-1+3 / 2 \mathrm{Z}^{\wedge}-2$
$H(z)=\left(1+3 Z^{\wedge}-1\right)\left(1+1 / 2 Z^{\wedge}-1\right)($ fig 1$)$
first term : zero @ $\mathrm{Z}=-3$ outside U.C. (therefore not min phase)
$2^{\text {nd }}$ term : zero @ $\mathrm{z}=-1 / 2$ inside U.C. (therefore not maz phase)
$\mathrm{h}[\mathrm{n}]$ is not symmetric, therefore not linear phase
Ë arbitrary phase (fig 2)
b. $\left|\mathrm{H}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right) \mathrm{G}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)\right|=1$

This product is an allpass, so its poles and zeros must be in reciprocal conjugate pairs.
G(z)
(fig 3)

The pole @ $\mathrm{z}=-1 / 2$ cancels the zero of $\mathrm{H}(\mathrm{z}) @ \mathrm{z}=-1 / 2$.
The pole @ $\mathrm{z}=-1 / 3$ combines with the zero @ $\mathrm{z}=-3$ to make an allpass filter.
$\mathrm{G}(\mathrm{z})=1 / 3 * 1 /\left[\left(1+1 / 2 \mathrm{Z}^{\wedge}-1\right)\left(1+1 / 3 \mathrm{Z}^{\wedge}-1\right)\right]$
This is the important part; it takes care of the magnitude equalization. The scale factor of $1 / 3$ normalizes the magnitude to 1 .
c. $\mathrm{G}(\mathrm{z})$ is not unique. Consider

G2 (z) $=G(z) \operatorname{Hap}(z)$
$G(z)$ from above
Hap(z) allpass filter

Then $\left|\mathrm{H}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right) \mathrm{G} 2\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)\right|=\left|\mathrm{H}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right) \mathrm{G}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)\right|^{*}| | \mathrm{Hap}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right) \mid=1$
(fig 4)
We can canstruct G2(z) by adding reciprocal conjugate pole-zero pairs to $\mathrm{G}(\mathrm{z})$. Such pole-zero pairs constitute an allpass filter. $\mathrm{G} 2(\mathrm{z})=1 / 3 * 1 / 2 *\left(1-2 \mathrm{Z}^{\wedge}-1\right) /\left[\left(1+1 / 2 \mathrm{Z}^{\wedge}-1\right)\left(1+1 / 3 \mathrm{Z}^{\wedge}-1\right)\left(1-1 / 2 \mathrm{Z}^{\wedge}-1\right)\right]$
d. linear phase $=\ddot{E}$ symmetry or anit-sym \ddot{E} zeros are reciprocal paris
$\mathrm{H}(\mathrm{z})(\mathrm{fig} 5)$
$\mathrm{F}(\mathrm{z})$ (fig 6) causal, stable all poles and zeros are inside u.c.
$\mathrm{H}(\mathrm{z}) \mathrm{F}(\mathrm{z})(\mathrm{fig} 7)$
$F(z)=\left(1+1 / 3 Z^{\wedge}-1\right) /\left(1+1 / 2 Z^{\wedge}-1\right)$
e. If $\mathrm{F}(\mathrm{z})$ is restricted to be FIR, it can't have any poles except @ $\mathrm{z}=0$ or $\mathrm{z}=$ infinite. We need to construct $\mathrm{F}(\mathrm{z})$ so that $\mathrm{H}(\mathrm{z}) \mathrm{F}$ (z) has zeros in reciprocal pairs

F(z) (fig 8)
H(z) F(z) (fig 9)
$F(z)=(z+2)(z+1 / 3)$
$F(z)=Z^{\wedge} 2+7 / 2 z+2 / 3$ minimum degree solution
F2(z) (fig 10) or F3(z), etc (fig 11)
$F 2(z)=\left(Z^{\wedge} 2+7 / 2 z+2 / 3\right)(z+1)$
$F 2(z)=Z^{\wedge} 3+10 / 3 Z^{\wedge} 2+9 / 3 z+2 / 3$

Problem 2

Real zero-phase type I filter $\mathrm{N}=2 \mathrm{~L}+1$
a. $\mathrm{H}(\mathrm{z})=\mathrm{z}+3 / 2+\mathrm{z}^{\wedge}-1$
$H\left(e^{\wedge} j w\right)=e^{\wedge} j w+e^{\wedge}-j w+3 / 2$
$\mathrm{H}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)=2 \cos w+3 / 2$
(fig 12)
i. $\mathrm{wp}=\pi / 3 \mathrm{ws}=2 \pi / 3$
ii. $\{0, \pi / 3,2 \pi / 3, \pi\}$
iii. yes, this is an extraripple soultion. It has alternations at 0 and π.
b. $G(z)=H(z)+\delta=z+2+z^{\wedge}-1$
i. $G\left(e^{\wedge} \mathrm{jw}\right)=2 \cos w+2$
$=2(\operatorname{cosw}+1)>=0$ for all w
$\mathrm{G}\left(\mathrm{e}^{\wedge} \mathrm{jwo}\right)=0$ for wo $=\pi$
ii. $G(z)=R(z) R\left(z^{\wedge}-1\right)$
$=\mathrm{z}+2+\mathrm{z}^{\wedge}-1$
$=(1+z)\left(1+z^{\wedge}-1\right)$
$\mathrm{R}(\mathrm{z})=1+\mathrm{z}\left(\right.$ or $\left.\mathrm{R}(\mathrm{z})=1+\mathrm{z}^{\wedge}-1\right)$
c. $N=9=\ddot{E} \quad L=4$
half of alternations n passband \mid implies an even number of alternations $r=L+2=6$
half of alternations in stopband \mid
Adding the stopband error δ shifts the response up so that $\mathrm{Fp}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right)>=0$ for all w .
(fig 13) alternations of $\mathrm{F}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$ are makred with x 's
d. $G(z)=R(z) R\left(z^{\wedge}-1\right)$
$G\left(e^{\wedge} j w\right)=R\left(e^{\wedge} j w\right) R\left(e^{\wedge}-j w\right)$
$R\left(e^{\wedge} j w\right)$ is conjugate symemetric since $r[n]$ is real, so $R\left(e^{\wedge}-j w\right)=R^{*}\left(e^{\wedge} j w\right)$
$\mathrm{G}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)=\mathrm{R}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right) \mathrm{R}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$
$\mathrm{G}\left(\mathrm{e}^{\wedge} \mathrm{j} \mathrm{w}\right)=\left|\mathrm{R}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)\right|^{\wedge} 2>=0$ for all w.
problem 3
a. $\operatorname{Hc}(j \Omega)=2 \sin \Omega \pi / \Omega$

The zeros of $\operatorname{Hc}(\mathrm{j} \Omega)$ are at $\Omega \pi=\pi \mathrm{k}\{\mathrm{k}$ not equal to 0$\}$
$\Omega=\pi \mathrm{k} / \tau$.
To find the zeros of $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right)$, find where the zeros of $\mathrm{Hc}(\mathrm{j} \Omega)$ are mapped to using the bilinear transformation equation (7.28b)
$\mathrm{w}=2 \arctan (\Omega \mathrm{Td} / 2) \mathrm{Td}=\tau / \mathrm{M}$
$=2 \arctan (\pi \mathrm{k} / 2 \mathrm{M})\{\mathrm{k}$ not equ to 0$\}$
b. Since the bilinear transformation is a one to one mapping, we can solve this problem in Ω and map it to w .

$$
|\operatorname{Hc}(j \Omega p)|=2 / \pi \operatorname{maz}|\operatorname{Hc}(j \Omega)|=2 \tau
$$

$2|\sin \Omega \mathrm{p} \tau| / \Omega \mathrm{p}=4 \tau / \pi$
By inspection
$\Omega \mathrm{p} \pi=\pi / 2, \Omega \mathrm{p}=\pi / 2 \tau$
$\mathrm{wp}=2 \arctan (\Omega \mathrm{pTd} / 2)$
$=2 \arctan (\pi / 2 \tau * 1 / 2 * \tau / \mathrm{M})$
$=2 \arctan (\pi / 4 \mathrm{M})$
c. The first zero of $\operatorname{Hc}(j \Omega)$ is at $\Omega=\pi / \tau$

The first zero of $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)$ is at $\mathrm{w}=2 \arctan (\pi / 2 \mathrm{M})$
So the width of the main lobe is $4 \arctan (\pi / 2 \mathrm{M})$
d. (1) Not FIR H3($\left.\mathrm{e}^{\wedge} \mathrm{jw}\right)$ has an infinite number of zeros
2. Symmetric $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right)$ is real

1. Stable No poles on the U.C.
2. Not casual Since it's symmetric and not FIR, it mush be not causal
3. Real $\mathrm{Hb}\left(\mathrm{e}^{\wedge} \mathrm{j} w\right)$ is conjugate symmetric

I left out the sjetch for part (a).....
(fig 14)

Since the entire $j \Omega$ axis is mapped into the w range $[-\pi, \pi]$, the zeros get closer and closer together as $|\omega| \neq \pi$. (there are an infinite number of zeros.)
e. For the impulse invariance method, we have

$$
\begin{aligned}
& \text { Hi }\left(\mathrm{e}^{\wedge} \mathrm{jw}\right)=\sum(\mathrm{k}=- \text { infinite to }+ \text { infinite }) \mathrm{Hc}(\mathrm{j} \mathrm{w} / \mathrm{Td}+\mathrm{j} 2 \pi \mathrm{k} / \mathrm{Td}) \\
& =\sum(\mathrm{k}) \sin [(\mathrm{w} / \mathrm{Td}+2 \pi \mathrm{k} / \mathrm{Td}) \tau][2 /(\mathrm{w} / \mathrm{Td}+2 \pi \mathrm{k} / \mathrm{Td})] ; \mathrm{Td}=\tau / \mathrm{M} \\
& =\sum(\mathrm{k}) \sin [(\mathrm{wM}+2 \pi \mathrm{kM}) * \tau / \tau][(2 \tau / \mathrm{M}) /(\mathrm{w}+2 \pi \mathrm{k})] \\
& =\sum(\mathrm{k}) \sin (\mathrm{wM}+2 \pi \mathrm{kM})[(2 \tau / \mathrm{M}) /(\mathrm{w}+2 \pi \mathrm{k})] ; 2 \pi \mathrm{kM}-\text { integer multiple }
\end{aligned}
$$

We know that $\operatorname{Hc}(\mathrm{j} \Omega)$ has zeros @ $\Omega=\pi \mathrm{n} / \tau$.

Note $\Omega \mathrm{Td}=\pi \mathrm{n} / \tau * \tau / \mathrm{M}=\pi \mathrm{n} / \mathrm{M}=$ zeros in w

So Hi(e^jw) $=\mathrm{Hc}(\mathrm{jw} / \mathrm{Td})$ at $\mathrm{w}=\pi \mathrm{n} / \mathrm{M}$

f. (fig 15)

Main lobe width $=2 \pi / \mathrm{M}$

