A point charge q is located in free space a distance d from a semi-infinite block of dielectric of relative dielectric constant kappa $=$ epsilon $/$ epsilon0.

The electrostatic potential for this system is

$$
\left.\left((x, y, z)=q / 4 \text { i }^{*} e p s i l o n 0\left[1 / \operatorname{sqrt}\left((x+d)^{2}+y^{2}+z^{2}\right)\right)+(1-k a p p a) /(1+k a p p a) * 1 / \operatorname{sqrt}\left((x+d)^{2}+y^{2}+z^{2}\right)\right)\right]
$$

$=\left(\mathrm{q} / 4 \mathrm{pi}{ }^{*}\right.$ epsilon 0$\left.)(2 / 1+\mathrm{kappa}) 1 / \operatorname{sqrt}\left((\mathrm{x}+\mathrm{d})^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)\right)$
10 pts (a) Find the electric field E in the dielectric block region $\mathrm{x}>0$.
10 pts(b) Find the bound surface charge density sigma-b [C/m2] at the surface $\mathrm{x}=0$.
10 pts(c) Find the electrostatic force acting on the charge q (both magnitude and direction).

An infinite cylindrical solenoid of radius b whose axis lies along the z-axis is partially filled with a concentric ferrite (nonconducting) rod having a radius $\mathrm{a}<\mathrm{b}$ and permeability $\mathrm{u}>\mathrm{u} 0$. A low frequency surface current $\mathrm{K}=$ phi $\mathrm{K} 0 \cos \mathrm{wt}[\mathrm{A} / \mathrm{m}]$ flows in the phi-direction on the surface of the solenoid at $\mathrm{r}=\mathrm{b}$.

10 pts (a) Assume that the frequency w is low enough that the laws of magnetostatics can be used to determine the time-varying magnetic fields, Find the (time-varying) magnetic field H and magnetic induction B everywhere within the solenoid ($\mathrm{r}<\mathrm{b}$).

10 pts (b) Using Faraday's law find the induced (time-varying) electric field E(r, t) everywhere within the solenoid ($0<\mathrm{r}<\mathrm{b}$).

Problem 3. Pulsed and Sinusoidal Transmission Line Excitations.

Two ideal lossless transmission lines, a and b, having lengths $\mathrm{l}=200 \mathrm{~m}$ and propagation velocities $\mathrm{v}=2$ E8 m / s, are connected together. The system is excited at the left on line a by an ideal dc voltage source $\mathrm{V}_{0}=$ 100 V and terminated at the right on line b by a resistor $\mathrm{R}=50$ ohms. Lines a and b have characteristic impedances $\mathrm{Z} 0 \mathrm{a}=50 \mathrm{ohms}$ and $\mathrm{Z} 0 \mathrm{~b}=100 \mathrm{ohms}$, respectively.

10 pts (a) Assuming that the voltage source V_{0} has been connected for a long time (-infinity $<\mathrm{t}<0$), what is the voltage (in volts) and the current (in amperes) at all points along lines a and b? Find (in volts) the forward and backward traveling waves (Va+, Va- and $\mathrm{Vb}+, \mathrm{Vb}-$) on lines a and b at time $\mathrm{t}=0$.

10 pts (b) Now assume that the dc voltage source is replaced by an ideal rf voltage source $\mathrm{V}(\mathrm{t})=\mathrm{V} 0$ cos wt , where $\mathrm{w}=\mathrm{pi} / 2 \mathrm{E} 6 \mathrm{rad} / \mathrm{s}$. Find the impedance Z_{xx} (real and imaginary parts in ohms) looking to the right at the junction x -x' joining lines a and b . You may used the Smith chart to do the calculation if you wish.

10 pts (c) For what values of w will the voltage source of part (b) be matched to its load (no backward wave on line a; i.e., Va- $=0$)?
Hom Copyright © 1997-1998 Eon Solutions Ltd Emai

This file has been created (at 11/27/98 3:00 PM 36126.6250694444) with the evaluation or unregistered copy of
EasyHTML from Eon Solutions Ltd
(Tel: +44 1625 827037, Email: support@easyhtml.com) http://www.easyhtml.com

