MIDTERM \#1

9 October 1995

[20 pts.] 1) Prove the following statements:
a) If $p(A)=p(B)=p(A \cap B)$, then $p\left(\left(A \cap B^{C}\right) \cup\left(B \cap A^{C}\right)\right)=0$
b) If $p(A)=p(B)=1$, then $p(A \cap B)=1$
c) $\quad p(A \cap B \mid C)=p(A \mid(B \cap C)) p(B \mid C)$
d) For any RV X, any $\quad \alpha>0, s>0, \quad P(X \geq \alpha) \leq e^{-s \alpha} E\left[e^{s X}\right]$
[20 pts.] 2) Box 1 contains 1000 bulbs of which 10% are defective. Box 2 contains 2000 bulbs of which 5\% are defective. Two bulbs are picked from a randomly selected box.
a) Find the probability that both bulbs are defective.
b) Assuming both are defective, find the probability that they came from Box 1 .
[20 pts.] 3) Random variable X has the density function

$$
f_{X}(x)=\frac{1}{2}+\frac{1}{2} \delta\left(x-\frac{1}{4}\right), \quad|x| \leq \frac{1}{2}
$$

Find the cdf, pdf, mean, and variance of X^{2}.
[20 pts.] 4) The probability that a driver will have an accident in 1 month is 0.02 . Find the probability that he will have 3 accidents in 100 months.
[20 pts.] 5) Players \#1 and \#2 roll dice alternatively starting with Player \#1. The player who rolls eleven first wins. Find the probability that \#1 wins.

NOTE: A Poisson RV has pmf $P_{k}=\frac{\alpha^{k}}{k!} e^{-\alpha}, \quad k=0,1 \ldots$

