Midterm Exam 1 Solutions
1)

$$
\begin{gathered}
P(A \mid B)=a P(B)=b P\left(B^{c} \mid A^{c}\right)=e \\
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(A)}=\frac{a b}{P(A)} \\
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)=a b+P\left(A \mid B^{c}\right)(1-b) \\
P\left(A \mid B^{c}\right)=1-P\left(A^{c} \mid B^{c}\right) \\
P\left(A^{c} \mid B^{c}\right)=\frac{P\left(B^{c} \mid A^{c}\right) P\left(A^{c}\right)}{P\left(B^{c}\right)}=\frac{e(1-P(A))}{1-b}
\end{gathered}
$$

Plugging in the previous 3 equations and algebraic simplification to get $\mathrm{P}(\mathrm{A})$ gives

$$
P(A)=1+\frac{a b}{1+\frac{b(a-1)}{1-e}}=\frac{a b(1-e)}{1-e+a b-b}
$$

2) a)
$\mathrm{p}($ active $)=\frac{1}{3}=p$

$$
\begin{aligned}
& p d f=f_{X}(x)=\sum_{k=0}^{48}\binom{48}{k} p^{k}(1-p)^{48-k} \delta(x-k) \\
& c d f=F_{X}(x)=\sum_{k=0}^{x}\binom{48}{k} p^{k}(1-p)^{48-k} u(x-k)
\end{aligned}
$$

b)

$$
P(X>24)=\sum_{k=25}^{48}\binom{48}{k} p^{k}(1-p)^{48-k}
$$

c) The expected fraction of dropped packets $=$ number of dropped packets over the number of total packets produced.

$$
\begin{aligned}
& =\frac{\sum_{k=M+1}^{48}(k-M)\binom{48}{k} p^{k}(1-p)^{48-k}}{\sum_{k=0}^{48}\binom{48}{k} k p^{k}(1-p)^{48-k}} \\
& =\frac{\sum_{k=M+1}^{48}(k-M)\binom{48}{k} p^{k}(1-p)^{48-k}}{n p}
\end{aligned}
$$

3)

The last flip must be heads, but the other two heads can come anywhere n the previous 7 flips as long as 2 and only 2 heads show up.

$$
p=0.6 *\binom{7}{2}(0.6)^{2}(0.4)^{5}
$$

4)

5 accidents/month gives 60 accidents per year

$$
P(X=0)=e^{-60}
$$

5)

Acceptable outcomes for a win are a 6 on the following rolls $1,3,5,7, \ldots$ The probability of rolling a 6 is $p=\frac{5}{36}$

$$
\begin{gathered}
P(\text { win })=\sum_{k=0}^{\infty} p(1-p)^{2 k}=p \sum_{k=0}^{\infty}(1-p)^{2 k} \\
=\frac{\frac{5}{36}}{1-\left(\frac{31}{36}\right)}=0.537
\end{gathered}
$$

6)

$$
\begin{gathered}
P(A \mid B)<P(A) \\
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}<P(B)
\end{gathered}
$$

Therefore, less likely.

