EECS 126 - MIDTERM \#1

1. Suppose there exists a test for cancer with the following properties. Let
$A=$ event that the test states that the tested person has cancer.
$B=$ event that person has cancer.

$$
\begin{aligned}
P(B) & =0.005 \\
P(A / B) & =0.95
\end{aligned}
$$

It is known that $P\left(B^{c} / A^{c}\right)=0.95$
What is the probability that a person has cancer given that the test says so? Is the test a good one?
2. A company produces computer chips at the defective rate of 10%. The good chips have much longer life than defective ones. The lifetime of good chips has the following cdf:

$$
F_{1}(x)=\left(1-e^{-x / 10}\right), \quad x \geq 0
$$

while the lifetime of defective chips has the following cdf:

$$
F_{2}(x)=1-e^{-x / 2}, \quad x \geq 0 .
$$

Compute the pdf of the lifetime of an arbitrarily picked chip.
3. Five people want to play a game of two against two. To decide who should be left out, each of the five people tosses a fair coin.

If after one round of tossing, the result is one Head and 4 Tails, or one Tail and 4 Heads, the person whose outcome is different from the rest of the group is out. Otherwise, everyone tosses again.
What is the probability that it will take exactly nth round of tossing to decide?
4. $\mathrm{RV} X$ has the density function

$$
f_{x}= \begin{cases}x+\frac{1}{2} \delta(x) & x \in[0,1] \\ 0 & \text { elsewhere }\end{cases}
$$

Now consider $Y=\left(X-\frac{1}{2}\right)^{2}$. Find its cdf, pdf, mean, variance, and standard deviation.

