[20 pts.] 1. Given $P(A)=\alpha, P(B)=\beta$ $P(A \cap B)=\gamma$
 Find: a) $P\left(A^{c} \cap B^{c}\right)$
 b) $P\left(A^{c} \cup B^{c}\right)$
 c) $P\left(A^{c} \mid B\right)$
 d) $P\left(A^{c} \mid B^{c}\right)$

[15 pts.] 2. A committee of four is picked randomly from a pool of 5 men and 4 women. Find the probability that there will be more women than men on the committee.
[25 pts] 3. Given two coins with probability of heads being p1 for coin 1 , and p 2 for coin 2 . You randomly pick a coin and flip it.

Let: $\quad \mathrm{X}=$ the number of heads in n flippings of the randomly picked coin.
$\mathrm{Y}=$ the number of flippings it takes to get the first head (flipping the randomly picked coin).
a) Find the probability mass functions of X and Y , respectively.
b) Suppose you flipped k times already and still have not got a head yet. Find the probability that you picked coin 1.
[40 pts] 4. Consider a signal detector to detect if a signal is present or not, as shown below:

where

X is the received signal plus noise, and
$X=\{\quad S$, when the signal is present (with probability $1 / 2$) $\mid \quad M$, when the signal is not present (with probability $1 / 2$)
S is a uniform random variable in [-,2], and M is a Gaussian RV with distribution $\mathrm{N}(0,1)$.
a) Find the pdf of X.
b) Let $g(X)=|X-1|$. Find the pdf of $Y=|X-1|$.
c) Given that $\mathrm{Y}>=1$, find the probability that the signal is present.

