EECS 140 Final Exam

NAME

SOLUTIONS

Fall 1996

\[L_n = L_p = 10^{-4} \text{ H} \]
\[g_n = g_p = 0 \]
\[\lambda_n = \lambda_p = 0.01 \]
\[V_{Tn} = V_{Tp} = 1 \text{ V} \]

2.6 Volts

\[W/L = 100 \]

a) \[V_{Min} = 1.7 \text{ Volts} \]
\[V_{Max} = 3.7 \text{ Volts} \]

b) \[600 \text{ pf} \]

b) \[10 \text{ Volts/Sec} \]

b) \[90 \text{ Degrees} \]

9) \[\frac{40}{\text{Rad/Sec}} \]

10) \[\frac{20}{\text{Volts/Sec}} \]

b) \[90 \text{ Degrees} \]

4) \[R = 600 \Omega \]

5) \[C = 1000 \text{ pf} \]

6) \[I_{Ref} = 25 \text{ mA} \]

7) \[a) \frac{9.7}{k} \text{ Rad/Sec} \]
\[b) 9.4 \text{ M Rad/Sec} \]

8) \[a) \frac{710}{V_{in}} \]
\[b) \frac{710}{I_{in}} \]
\[c) R_{in} = 1 \Omega \]
1) All transistors have W/L=50, unless otherwise indicated.

a) What is maximum value at v_{out} in the positive direction which still has all transistors in saturation?

$$v_o = 5 - (V_T + 2V_{d_{SAT}}) = 3.64$$

b) Choose the W/L of M1 to maximize the swing at v_{out} in the negative direction which has all transistors in saturation.

$$V_T + V_{d_{SAT,M1}} = V_T + 2V_{d_{SAT}}$$

$$V_{d_{SAT,M1}} = 0.36V$$

$$\left(\frac{2 \times 40 \times 10^{-6}}{10^{-4} \times \frac{W}{L}}\right)^{1/2} = 0.36$$

$$\frac{W}{L} = 6.2$$
2) What is the range of DC voltages at V_{out} over which the gain is maximum?

$V_{Vin} = V_B - V_T = 1.72\, \text{V}$
$V_{Max} = V_B + V_T = 3.72\, \text{V}$

5) What is that maximum gain? 106

$R_{o} = \frac{g_m}{2}$

$A_V = g_m R_{o} = \frac{(g_m R_{o})^2}{2} = \frac{2 A_{V_{max}} \mu_0 l D s}{2}$

$= 10^6$
(a) Assume V_{in} is set so the output is at 0 volts. What are the W/L's of $M4$ and $M2$ so that the output resistance, R_{out} = 500Ω.

\[R_{out} = \frac{V_{out}}{I_{ds}} = 500Ω \]

\[I_{ds} = 10^{-4} A = 100μA \]

\[(W/L)_{M1} = 2 \cdot \frac{W}{L} \]

\[I_{ds} = \frac{2 (V_{gs} - V_{th})}{L} \]

\[V_{th} = \frac{10^{-3} V}{\frac{W}{L}} \]

\[V_{th} = 2 \cdot \frac{I_{ds}}{L} \]

\[V_{in} - 2.93V \leq V_{dsat} \leq V_{in} + 2.93V \]

(b) Assume W/L of $M1$ & $M2 = 50$, then what are the maximum positive and minimum negative voltages (devices can go into linear region) if V_{in} goes between +5V to -5V.

\[V_{min} = 2.93V \]

\[V_{max} = 2.93V \]

\[5 - V_{in} - V_{dsat} = V_{out} \]

\[V_{out} = 4 - \left(\frac{2V_{out}}{10^{-3}V} \right) \]

\[V_{out} = 4 - V_{out} \cdot 0.63 \]

\[V_{out} \approx 2.93 \]
4) \[\text{All } V_{ES} = 100 \]

The emitter of Q\(_2\) is 10 times larger than the emitter of Q\(_1\).

What is the value of \(V_{out} = 100 \mu A \) good?

\[V_t = \frac{V_{out}}{1 + \frac{R}{2Q_{on}}} \]

\[V_t = ln(10) \frac{I}{R} \]

\[\frac{V_t}{2} = 0.026 \ln(10) \frac{I}{R} \]

\[1 = \frac{I}{10^{-4}} \]

\[= 6000 \Omega \]
All \(W/L \)'s = 50

(5)

100\(\mu \)A

\(u_{in} \)

\(C_{c} \)

\(U_{out} \)

\[g_{m} = \left(2 \cdot 10^{-4}, 50 \cdot 10^{-4}\right)^{1/2} \]

\[f_{0} = 10^{6} \quad = 10^{-3} \]

\[f_{0} = 10^{6} \]

\[g_{m} = \frac{1}{g_{mF0C}} \]

\[C_{c} = \frac{g_{m}}{10^{6}} = 10^{-9} \text{ f} \]

What is the capacitor, \(C_c \), which will give \(W_{unity} \) at \(f_{0} \) sec?

\(C_{c} \quad \text{1000 pf} \)

\(W_{unity} = \text{open loop unity gain frequency} \)

\(a_{c} (g_{mF0})^2 \quad \text{10}\text{6} \)

\[W_{0} = \frac{\left(g_{mF0}\right)^2}{10^{6}} \frac{1}{5(g_{mF0C})} \]
What is the current, I_{ref}, which gives a common mode rejection ratio (CMRR) of 60 dB?

$$\text{CMRR} = \frac{A_{dm}}{A_{cm}} = \frac{\frac{g_m I_{04}}{2}}{\frac{g_m I_{04}}{1 + 2 g_m R_0}}$$

$$R_0 = \frac{R_{04}}{2}$$

$$= \frac{1 + g_m R_{04}}{2} \approx \frac{g_m R_{04}}{2} = 10^3$$

$$\left(2 \frac{L}{W} I_{\text{DS}}\right)^{1/2} \frac{I_{\text{DS}}}{I_{\text{DS}_L}} = 2 \times 10^3$$

$$I_{\text{DS}} = 25 \mu A$$
Problem 7)

\[\text{5 volts} \]

\[V_{\text{in}} \rightarrow \text{M1} \rightarrow \text{M2} \rightarrow \text{M3} \rightarrow \text{M4} \rightarrow \text{M5} \rightarrow \text{M6} \rightarrow \text{M7} \rightarrow \text{M8} \rightarrow \text{M9} \]

\[I_{\text{ref}} = 100 \mu A \]

\[R_0 = 10^6 \]

\[V_{\text{out}} \]

\[\text{All W/L's=50 except for M6} \]

\[\text{1M}\Omega \]

\[10\text{pf} \]

\[-5\text{ volts} \]

\(e = V_{\text{in}} \)

\(V_{\text{out}} \)

\(e \)

\(V_{\text{in}} \)

\(V_{\text{out}} \)

\(10\text{pf} \)

\(1\text{M}\Omega \)

\(1\text{M}\Omega \)

\(W/L=100 \)

\[a) \text{ Where is the first pole of } V_{\text{out}}/V_{\text{in}}? \]

\[\text{Node A} \]

\[C_A = \left(C_{gs5} + C_{gd5} \frac{g_{m5}^2}{2} + 20\text{pf} \right) \]

\[= 20.6 \text{pf} \]

\[\omega_1 = \frac{1}{R_0} C_A = \frac{1}{10^6 \cdot 20.6 \text{pf}} = 97 \times 10^3 \]

\[b) \text{ Where is the second pole?} \]

\[\text{Node B} \]

\[\omega_2 = \frac{1}{R_0} \left(C_{gs2} + C_{gb2} + C_{gd2} \right) = \frac{1}{10^6 \cdot (106 \text{ff})} \]

\[= 9.4 \text{ Meq/s} \]

\[\text{Kra0} \text{/sec} \]

\[9.4 \text{ Meq/s} \]

\[\text{/sec} \]
Analyze this circuit considering M1 & M3 as the providing feedback and M2 & M4 as the basic amplifier.

a) What kind of feedback is this? Shunt

b) What is the closed loop gain, \(V_{out} \over V_{in} \)?

c) What is \(R_{in} \)?

\[g_m = \frac{2 \times 10^{-4} \cdot 100 \cdot 100 \mu A}{g_m} = 1.4 \times 10^{-3} \]

\[R_{in} = \frac{1}{g_m} = \frac{1}{g_m} \over g_m \frac{f_0}{2} = 2 \over 2 + f_0 \frac{2 \times 10^6}{10^6} = 1 \Omega \]
A) An op amp has the following poles and zeros:

\[
\begin{align*}
W_{P1} &= 10^7 \text{ rad/sec} \\
W_{P2} &= 10^8 \text{ rad/sec} \\
W_{P3} &= 10^9 \text{ rad/sec} \\
W_c &= 2
\end{align*}
\]

And the open loop gain \(G_0 = 10^5 \)

If the op amp is connected as follows:

![Op Amp Diagram]

At what frequency should a compensation pole be added so that the phase margin is 45°? We have \(\frac{\pi}{2} \text{ rad/sec} = 410 \text{ rad/sec} \)

\[
T = 0.5 = 10^5 \cdot (1) = 10^4
\]

Each pole at 10^9 should be 22.5°.

Contribution from \(-1 \frac{W}{10^7} = 22.5°\)

\[
W = 10^7 \tan 22.5° = 4.1 \times 10^6
\]
Problem 10)

\[V_{\text{out}} = \frac{20}{\Delta t} = \frac{2 \times 10^{-4}}{10^{-11}} = 20 \, \text{V/\mu s} \]

a) What is the minimum slew rate of this circuit?

\[20 \, \frac{\text{V}}{\text{\mu s}} \]

b) What is the phase margin of this circuit?

\[90^\circ \]

\[R_{0,\text{f}} = R_0 \left(g_{m1} R_2 \right) \parallel R_0 \left(g_{m2} R_2 \right) \]

\[210 \cdot a_0 = \frac{1}{1.2 \times 10^8} \]

\[w_d = 47 \times 10^7 \, \text{sec}^{-1} \]

\[w_{0N} \approx \frac{1}{g_m (12.4 f)} \]

\[w_{0N} = 10^9 \]

\[R_{0,\text{f}} = 1.4 \times 10^3 \times 4.7 \times 10^9 \]

\[\approx 6.8 \times 10^5 \]