EE 140, Spring 1994 Final Exam Professor ?

BJT Parameters	MOS
$I_{S} = 1 \times 10^{-14} \text{ A}$	$V_{T,n} = 1 V_0$
$C_{\pi} = 1 pf$	$V_{T,P} = -1 V_0$
$C_{\mu} = .1 \text{ pf}$	$k'_n = k'_P = 50 \ \mu A/V^2$
$C_{CS,nPn} = 1 pf$	$\lambda_n=\lambda_P=.05$
$C_{CS,PnP} = 0 pf$	$\gamma_n = \gamma_P = .3$
$V_{A,nPn} = V_{A,PnP} = 50 V_0$	$C_{\pi} = 1 pf$
$\beta_{nPn}=\beta_{PnP}=100$	$C_{\mu} = .1 \text{ pf}$
	$C_{SB} = 1 pf$
$V_{CE(SAT)} = .2$	$C_{DB} = 1 pf$
	$2\phi_f = .6 V_0$
U +5V	6 M
1.05mg	
Inn VOUT	······································

HINT

15 GREATER

(1) What is the DC voltage at V_{OUT} ?

57

ANSWER

THE

TRA

EE 140, Final Exam, Spring 1994

$$V_{OUT} = __V_0$$

(2) What is the value of R so that $V_{OUT} = 1 V_0$?

- (3a) What is V_{OUT}/V_{IN} ?
- (3b) What is R_{OUT}?_____

(4) What is V_{OUT}/V_{IN} ?

(5a) What is V_{OUT}/V_{IN} ?

(5b) What is the lowest frequency pole ω_{pi} _____ rad/sec

EE 140, Final Exam, Spring 1994

(6a) What is the value of R for an output current of .1 mA? Ω

(7a) If V_{IN} is set so that $V_{OUT} = 0 V_0$, what is the power dissipation of this circuit?

pwr = _____ mW

(7b) If $V_{OUT} = 3V_0$, what is the power dissipation for everything except the resistor? _____ mW

(8) If the above Bode plots are for the op amp in the following circuit, what is the value of R that will give a phase margin of 90° ?

 $R = ___ \Omega$

(9a) What kind of local feedback is being used in this circuit?

(9b) What is the loop gain, T, of this circuit?

(10a) What is the loop gaing of this circuit? T =_____

(10b) What is V_{OUT}/V_{IN} ?

EE 140, Final Exam, Spring 1994

Assume the input is set so the output is at $-5V_0$

(11a) If $C_{C1} = 20$ pf and $C_{C2} = 0$ pf, what is the slew rate of this circuit? _____ V/µsec

(11b) At what frequency is the dominant pole if $C_{C1} = 20$ pf and $C_{C2} = 0$ pf? _____ rad/sec

(11c) For $C_{C1} = 10$ pf, what is the value of C_{C2} for 45° of phase margin if the poles and zeros of this circuit not associated with C_{C2} are at:

 $f_{p1} = 1 \text{ MHz}$ $f_{p2} = 1 \text{ MHz}$ $f_{p3} = 10 \text{ MHz}$ $f_{p4} = 100 \text{ MHz}$ $f_{z1} = 1.0 \text{ MHz}$ $f_{z2} = 50 \text{ MHz}$

Assume that these poles do not move as the pole associated with C_{C2} is moved. Also assume the open loop gain, $A_0 = 10^5$.

(i.e. do not calculate the gain)

What is the input offset voltage, V_{OS} , that sets $V_{OUT} = 0V_0$

 $V_{OS} = __V$

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact <u>mailto:examfile@hkn.eecs.berkeley.edu</u>