EE 140, Spring 1994
 Final Exam
 Professor?

BJT Parameters

$\mathrm{I}_{\mathrm{S}}=1 \times 10^{-14} \mathrm{~A}$
$\mathrm{C}_{\pi}=1 \mathrm{pf}$
$\mathrm{C}_{\mu}=.1 \mathrm{pf}$
$\mathrm{C}_{\mathrm{CS}, \mathrm{nPn}}=1 \mathrm{pf}$
$\mathrm{C}_{\mathrm{CS}, \operatorname{PnP}}=0 \mathrm{pf}$
$\mathrm{V}_{\mathrm{A}, \mathrm{nPn}}=\mathrm{V}_{\mathrm{A}, \operatorname{PnP}}=50 \mathrm{~V}_{0}$
$\beta_{\mathrm{nPn}}=\beta_{\mathrm{PnP}}=100$
$\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})}=.2$

(1) What is the DC voltage at $\mathrm{V}_{\text {OUT }}$?

$$
\mathrm{V}_{\text {OUT }}=\ldots \mathrm{V}_{0}
$$

(2) What is the value of R so that $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{0}$?
$\mathrm{R}=\ldots \quad \Omega$
(3)

(3a) What is $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}$?
(Bb) What is $\mathrm{R}_{\mathrm{OUT}}$?

(4) What is $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$? \qquad

(Fa) What is $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}$? \qquad
(5b) What is the lowest frequency pole ω_{pi} \qquad $\mathrm{rad} / \mathrm{sec}$

(ba) What is the value of R for an output current of .1 mA ? \qquad Ω

(7a) If $\mathrm{V}_{\text {IN }}$ is set so that $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}_{0}$, what is the power dissipation of this circuit?
pwn = \qquad mW
(7b) If $\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{0}$, what is the power dissipation for everything except the resistor? \qquad mW
8)

If TM A WOVE EODE ...PCOTS ... AR S
Frow the $\triangle P$.AMP in fir Faccownc LIECUTT, WHGT IS THE VALLS of R

(8) If the above Bode plots are for the op amp in the following circuit, what is the value of R that will give a phase margin of 90° ?
$\mathrm{R}=$ \qquad Ω

(9a) What kind of local feedback is being used in this circuit?
(9b) What is the loop gain, T, of this circuit? \qquad

(10a) What is the loop gang of this circuit? $\mathrm{T}=$ \qquad
(10b) What is $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$?

Assume the input is set so the output is at $-5 \mathrm{~V}_{0}$
(11a) If $\mathrm{C}_{\mathrm{C} 1}=20 \mathrm{pf}$ and $\mathrm{C}_{\mathrm{C} 2}=0 \mathrm{pf}$, what is the slew rate of this circuit? \qquad $\mathrm{V} / \mu \mathrm{sec}$
(11b) At what frequency is the dominant pole if $\mathrm{C}_{\mathrm{C} 1}=20 \mathrm{pf}$ and $\mathrm{C}_{\mathrm{C} 2}=0 \mathrm{pf}$? \qquad $\mathrm{rad} / \mathrm{sec}$
(11c) For $\mathrm{C}_{\mathrm{C} 1}=10 \mathrm{pf}$, what is the value of $\mathrm{C}_{\mathrm{C} 2}$ for 45° of phase margin if the poles and zeros of this circuit not associated with $\mathrm{C}_{\mathrm{C} 2}$ are at:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{p} 1}=1 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{p} 2}=1 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{p} 3}=10 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{p} 4}=100 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{z} 1}=1.0 \mathrm{MHz} \\
& \mathrm{f}_{\mathrm{z} 2}=50 \mathrm{MHz}
\end{aligned}
$$

Assume that these poles do not move as the pole associated with $\mathrm{C}_{\mathrm{C} 2}$ is moved. Also assume the open loop gain, $\mathrm{A}_{0}=10^{5}$.
(i.e. do not calculate the gain)

What is the input offset voltage, $\mathrm{V}_{\text {OS }}$, that sets $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}_{0}$
$\mathrm{V}_{\mathrm{OS}}=\ldots \quad \mathrm{V}$

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

