U.C Berkeley

EECS 140 Midterm 1: October 8, 1990
Fall 1990
Professor R.T. Howe

Ground Rules:

Closed Book and Notes
Do all work on exam pages
You have 50 minutes; use your time wisely

QUESTION 1.
 MOS Inverter [15 points]

Non-linear i_{L} versus v_{1} characteristics of load device.
$\mathrm{i}_{\mathrm{L}}=\mathrm{k}_{\mathrm{L}} *$ squareroot $\left(\mathrm{v}_{\mathrm{L}}\right)$ where $\mathrm{k}_{\mathrm{L}}=800$ micro $* \mathrm{~A} * \mathrm{~V}-1 / 2$
(picture 2)
(154

Output characteristics of the MOSFET. The constant mu sub $\mathrm{n} * \mathrm{C}_{\mathrm{ox}}(\mathrm{W} / \mathrm{L})=500$ micro $* \mathrm{~A} * \mathrm{~V}-1 / 2$

a.) [5 points] Find an equation relating v_{0} to v_{I} which is valid when the MOSFET is in the triode region.
b.) [5 points] Find an equation relating v_{0} to v_{I} which is valid when the MOSFET is saturated.
c.) [5 points] Using the graphical load line technique, plot the transfer curve v_{o} versus v_{I} on the graph below, using the given current-voltage characteristics of the MOSFET. Label on your plot the points on the transfer curve which mark the boundaries between the cutoff, saturation, and triode regions of operation.
picture 4

QUESTION 2 [17 points]

Potential in Thermal Equilibrium

a.) 6 points Consider an n-type sample with the donor concentration varying as shown in the log-linear plot below. In thermal equilibrium, plot the variation in potential phi (x) for $0<\mathrm{x}<3$ micro metres on the plot below.
picture 5

picture 6

b.) [6 points]

Consider a p-type sample with the acceptor concentration varying as shown in the log-linear plot below. In thermal equilibrium, plot the variation in potential phi (x) for $0<\mathrm{x}<3$ micro metres on the plot below.
picture 7

picture 6

c.) [5 points]

Consider a sample which is doped with the superposition of the donor and acceptor concentrations from part a and part b , as shown in the log-linear plot below. In thermal equilibrium, sketch the variation potential phi (x) for $0<x<3$ micro metres on the plot below. Hint: the width of the deletion region is 1 micro meter
picture 7

picture 5

QUESTION 3 [18 POINTS]

pn junction diode
Given : pn junction diode with cross sectional area of $10 * 10^{-6} \mathrm{~cm}^{2}$
p side doping:
$N_{a}=2 * 10^{16} \mathrm{~cm}^{-3}$
$N_{d}=0$
n side doping:

$$
N_{a}=1 * 10^{16} \mathrm{~cm}^{-3}
$$

$$
N_{d}=0
$$

minority carrier properties:

$$
\mathrm{D}_{\mathrm{n}}=25 \mathrm{~cm}^{2} \mathrm{~s}^{-1}
$$

$\mathrm{Tau}_{\mathrm{n}}=400 \mathrm{~ns}=.4$ micro seconds

$$
\mathrm{D}_{\mathrm{p}}=25 \mathrm{~cm}^{2} \mathrm{~s}^{-1}
$$

$\mathrm{Tau}_{\mathrm{n}}=10$ microseconds (translators note: Yes the exam redefines tau???)

miscellaneous

$$
\begin{aligned}
& k T / q=26 \mathrm{mV} \\
& \mathrm{n}_{\mathrm{i}}=1 * 10^{10} \mathrm{~cm}^{-3}
\end{aligned}
$$

a.) [7 points] Plot the minority carrier concentrations on the linear graphs below for the case of forward bias
$\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V}$
picture 8

b.) [7 points] Find the numerical value of the saturation current I_{S} for this diode. Note: the saturation current is defined in the diode characteristic
$I_{D}=I_{S}\left(\mathbf{e}^{q V \operatorname{subp} / k T}-1\right)$.
c.) [4 points]

Find the numerical value of the small signal registor r_{d} for a bias voltage $V_{D}=0.6 \mathrm{~V}$. If you couldn't solve part (b), assume that $\mathrm{I}_{\mathrm{S}}=10^{-15} \mathrm{~A}$.

