EE 130, Spring/2000
 Midterm I Solutions
 Professor C. Hu

Problem \#1

A n-type silicon sample has the energy band diagram shown below.

Qualitatively sketch the items on the following linear-linear axes: (5 points each)

Problem \#2

Shallow $n+p$ junctions are often found in state-of-the-art processes. The following is a simplified process. You may assume infinite selectivity and 100% step coverage in this process. Please fill in the missing steps and answer the questions.
-Start with a p-type silicon wafer.

-Grow a 30 nm thick oxide layer.

Fill in the next processing step(s): (2pts)

Lithography module $=$ (i) spin on resist, (ii) stepper exposure, (iii) develop pattern
-Ion Implant

-If the junction depth is to be kept as small as possible, which ion species would you use to make a p-n junction? List three reasons to support your answer (4pts)
Arsenic: (1) donor ion (Group IV), (2) reduced Rp and delta Rp, (3) reduced diffusivity
-Strip photoresist. RTA until the junction depth reaches 0.06um.
Paying attention to the relative dimensions, sketch the p-n junction profile inside the silicon sample shown below. (3pts)
In the accompanying axes, qualitatively draw the Na and Nd profiles along the p-n junction and indicate the position of the metallurgical junction. Assume that the implanted peak is at the Si-SiO2 interface (3pts)

-Deposit 4000A oxide as a passivation layer. If you wanted to deposit oxide at the lowest possible temperature, what process technology would you use? (2pts)
PECVD

-Fill in the next processing step(s): (1pt)

Lithography module
-Dry etch a contact hole over the center of the n-region.
-Strip photoresist. Deposit 4000A aluminum.
What process technology would you use to deposit aluminum? (2pts)
Sputter
-Fill in the next processing step(s): (1pt) Lithography module
-Etch a very fine (i.e. thin) aluminum line.
What processing technology would you use? (2pts) Dry Etch
What chemial(s) are involved? (2ts) To remove Al , use plasmas containing Cl
-Remove photoresist
-Draw the final cross section. (3pts)

Problem \#3

Consider a silicon p-n junction with doping levels $\mathrm{Na}=10^{\wedge} 15 \mathrm{~cm}^{\wedge}-3$ and $\mathrm{Nd}=3.5 \times 10^{\wedge} 15 \mathrm{~cm}^{\wedge}-3$.
a) Calculate the ration of Xn to Wdep. (5pts)
eqtn1: $\mathrm{Xn}+\mathrm{Xp}=\mathrm{Wdep}$
eqtn2: $\mathrm{Xn} * \mathrm{Nd}=\mathrm{Xp} * \mathrm{Na}$
Therefore, $\mathrm{Xp}=\mathrm{Np} / \mathrm{Na} * \mathrm{Xn}$
Plug Xp into eqtn 1 to get
$\mathrm{Xn} *(1+\mathrm{Nd} / \mathrm{Na})=$ Wdep
$\mathrm{Xn} / \mathrm{Wdep}=\mathrm{Na} /(\mathrm{Nd}+\mathrm{Na})=10^{\wedge} 15 /\left(4.5^{*} 10^{\wedge} 15\right)=.22$
b) What is the built-voltage PHIbi? (5pts)

PHIbi $=\mathrm{K} * \mathrm{~T} / \mathrm{q}^{*} \ln \left(\mathrm{Na}^{*} \mathrm{Nd} / \mathrm{Ni}^{\wedge} 2\right) \quad=(.026)^{*} \ln \left(10^{\wedge} 15^{*} 3.5 \mathrm{x} 10^{\wedge} 15 / 10^{\wedge} 20\right) \quad=.63 \mathrm{~V}$
c) Calculate how much of PHIbi exists on the N -side. (5pts)
(i) PHIn $/$ PHIp $=1 / 2 * E m a x * X n /(1 / 2 * E m a x * X p)$ Therefore, $\mathrm{PHIp}=\mathrm{Xp} / \mathrm{Xn} *$ PHIn
(ii) PHIbi $=$ PHIn + PHIp $=$ PHIn + Xp/Xn *PHIn PHIn/PHIbi $=(1+\mathrm{Xp} / \mathrm{Xn})^{\wedge}-1$
(iii) $\mathrm{Xp} * \mathrm{Na}=\mathrm{Xn} * \mathrm{Nd}$ PHIn/PHIbi $=(!+\mathrm{Nd} / \mathrm{Na})^{\wedge}-1=(1+3.5)^{\wedge}-1=1 / 4.5=.22$
*NOTE that this is the same expression as in part a!
d) Under a 2 V reverse bias, the donor ion charge on the N -side of the depletion region is $10^{\wedge}-6 \mathrm{C} / \mathrm{cm}^{\wedge} 2$. What is the acceptor ion charge on the P -side? (5pts)
(i) Qn -side $=\mathrm{q}^{*} \mathrm{Nd}^{*} \mathrm{Xn}=\mathrm{q}^{*} \mathrm{Na} * \mathrm{Xp}=\mid \mathrm{Qp}$-side $\mid \quad *$ charge neutrality Therefore, Qp -side $=-10^{\wedge}-6 \mathrm{C} / \mathrm{cm}^{\wedge} 2$

Problem \#4

The parameters shown in the figure below are known.

Write down the expressions and numerical answers for the following items:
(3pts) a) Potential barrier across the depletion region
$\mathrm{PHI}=\mathrm{PHIbi}-\mathrm{Va}=\left(\mathrm{K}^{*} \mathrm{~T} / \mathrm{q} * \ln \left(10^{\wedge} 19^{*} 10^{\wedge} 15 / \mathrm{Ni}^{\wedge} 2\right)\right)-.5=.34 \mathrm{~V}$
(2pts) b) Depletion width
Wdep $=\left(2 * E s i *(\mathrm{PHIi}-\mathrm{Va}) /\left(\mathrm{q}^{*} \mathrm{~N}\right)\right)^{\wedge} 1 / 2=\left(2(11.7)(8.85 \mathrm{E}-14)(.34) /\left((1.6 \mathrm{E}-19)\left(10^{\wedge} 15\right)\right)\right)^{\wedge} 1 / 2=6 \mathrm{um}$
(3pts) c) $\mathrm{Np}^{\prime}(0 \mathrm{p})$ and $\mathrm{Pn}^{\prime}(0 \mathrm{n})$
$\mathrm{Np}^{\prime}=\mathrm{Np} 0^{*}\left(\mathrm{e}^{\wedge}\left(\mathrm{q}^{*} \mathrm{Va} /\left(\mathrm{K}^{*} \mathrm{~T}\right)\right)-1\right) \sim \mathrm{Ni} \mathrm{N}^{\wedge} 2 / \mathrm{Na} * \mathrm{e}^{\wedge}\left(\mathrm{q}^{*} \mathrm{Va} /\left(\mathrm{K}^{*} \mathrm{~T}\right)\right)=10^{\wedge} 20 / 10^{\wedge} 15 * \mathrm{e}^{\wedge} .5 / .026=2.3^{*} 10^{\wedge} 13 / \mathrm{cm}^{\wedge} 3$
$\operatorname{Pn}^{\prime}=\operatorname{Pn} 0 *\left(\mathrm{e}^{\wedge}\left(\mathrm{q}^{*} \mathrm{Va} /\left(\mathrm{K}^{*} \mathrm{~T}\right)\right)-1\right) \sim \mathrm{Ni}^{\wedge} 2 / \mathrm{Na}{ }^{*} \mathrm{e}^{\wedge}\left(\mathrm{q}^{*} \mathrm{Va} /\left(\mathrm{K}^{*} \mathrm{~T}\right)\right)=10^{\wedge} 20 / 10^{\wedge} 15 * \mathrm{e}^{\wedge} .5 / .026=2.3^{*} 10^{\wedge} 13 / \mathrm{cm}^{\wedge} 3$
(3pts) d) $\mathrm{Pp}^{\prime}(0 \mathrm{p})$ and $\mathrm{Nn}^{\prime}(0 \mathrm{n})$
$\mathrm{Pp}^{\prime}=\mathrm{Np}^{\prime}=2.3^{*} 10^{\wedge} 13 / \mathrm{cm}^{\wedge} 3$
$\mathrm{Nn}^{\prime}=\mathrm{Pn}^{\prime}=2.3 * 10^{\wedge} 9 / \mathrm{cm}^{\wedge} 3$
(3pts) e) Itotal
(i) Itotal \sim downloaded by current in p-side $=-\mathrm{A}^{*} \mathrm{q}^{*} \mathrm{Dn}^{*} \mathrm{~Np} 0 * \mathrm{e}^{\wedge}\left(\mathrm{q}^{*} \mathrm{Va} /(\mathrm{K} * \mathrm{~T})\right) / \mathrm{Ln}$
(ii) $\mathrm{Dn}>\mathrm{K} * \mathrm{~T} / \mathrm{q} * \mathrm{Un}=.026 * 1400=36.4 \mathrm{~cm}{ }^{\wedge} 2 / \mathrm{s}$
$\mathrm{Ln}=(\mathrm{Dn} * \mathrm{TAUn})^{\wedge} .5=.0134 \mathrm{~cm}$
(iii) Therefore, Itotal $=-\left[\left(10^{\wedge}-4 \mathrm{~cm}^{\wedge} 2\right)^{*}(1.6 \mathrm{E}-19)^{*}(36.4)^{*}\left(10^{\wedge} 5\right)^{*} \mathrm{e}^{\wedge}(.5 / .026)\right] / .0134=-.98 \mathrm{uA}$
(iv) verify: check the hole component term:
$|\mathrm{Ih}|=\mathrm{A} * \mathrm{q} * \mathrm{Dp} *$ Pinfinity ${ }^{*} \mathrm{e}^{\wedge}(\mathrm{q} * \mathrm{Va} /(\mathrm{K} * \mathrm{~T})) / \mathrm{Lp}$
$\mathrm{Lp}=(\mathrm{Dp} * \mathrm{TAUp})^{\wedge} .5=5 \mathrm{E}-4 \mathrm{~cm}$
Therefore, $|\mathrm{Ih}|=\left[\left(10^{\wedge-4}\right)^{*}(1.6 \mathrm{E}-19)^{*}(2.6)^{*}(10)^{*} \mathrm{e}^{\wedge}(.5 / .026)\right] / 5 \mathrm{E}-4=1.9 \mathrm{E}-10 \mathrm{~A} \ll|\mathrm{Ie}|$
(3pts) f) Junction depletion capacitance Cj
$\mathrm{Cj}=\mathrm{Esi}{ }^{*} \mathrm{~A} / \mathrm{Wdep}=(11.7)^{*}(8.85 \mathrm{E}-14)^{*}\left(10^{\wedge}-4\right) /(.6 \mathrm{E}-4)=1.73 \mathrm{pF}$
(3pts) g) Junction diffusion capacitance Cdiff
Cdiff $=$ Itotal $* T A U e /\left(1 * c^{*} * / q\right)=188 p F$
(3pts) h) What is the total charge Q in the excess carrier distribution?
Qtotal $=$ Itotal $*$ TAUe $=$ total charge is dominated by e- injection into p-side $=(-.98 \mathrm{uA})^{*}(5 \mathrm{usec})=-4.9^{*} 10^{\wedge}-12 \mathrm{C}$
(3pts) i) What is the total rate of recombination?
$\mathrm{R}=$ rate of recombination $=\mathrm{Qtotal} /\left(\mathrm{q}^{* T A U e}\right)=4.9^{*} 10^{\wedge}-12 /\left((1.6 \mathrm{E}-19)^{*}(5 \mathrm{E}-6)\right)=6.13^{*} 10^{\wedge} 12 / \mathrm{sec}$
$(4 \mathrm{pts}) \mathrm{k}$) If the capacitance of this diode were 5 pF at a 2 V reverse bias and 10 pF at 0 bias, how should Na be changed? We still have a $\mathrm{N}+\mathrm{P}$ diode; depletion cap. dominates in this region.
$5 \mathrm{pF}=\mathrm{Esi}{ }^{*} \mathrm{~A} / \mathrm{Wdep}=\mathrm{Esi}^{*} \mathrm{~A} /\left(2 * \mathrm{Esi}^{*}(\mathrm{PHIbi}+2) /\left(\mathrm{q}^{*} \mathrm{~N}\right)\right)^{\wedge} .5 \mathrm{AND} 10 \mathrm{pF}=\mathrm{Esi} * \mathrm{~A} /\left(2 * \operatorname{Esi}{ }^{*} \mathrm{PHIbi} /\left(\mathrm{q}^{*} \mathrm{~N}\right)\right)^{\wedge} .5$
$5 \mathrm{pF} / 10 \mathrm{pF}=1 / 2=\mathrm{PHIbi}^{\wedge} .5 /(\mathrm{PHIbi}+2)^{\wedge} .5$
$1 / 4=$ PHIbi/(PHIbi+2)
PHIbi+2 $=4 *$ PHIbi
PHIbi $=2 / 3=.67 \mathrm{~V}=\mathrm{K} * \mathrm{~T} / \mathrm{q}^{*} \ln \left(\mathrm{Na}^{*} \mathrm{Nd} / \mathrm{Ni}^{\wedge} 2\right)$
Therefore, $\mathrm{Na}=1.55^{*} 10^{\wedge} 12 \mathrm{~cm}^{\wedge}-3$

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
 University of California at Berkeley
 If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

