
CS���� Solution to Exam � February ��� ����
David Wolfe

Problems have been rephrased a little bit for clarity�
There are two requirements for passing the course� ��� You must submit the questionaire from the �rst

day of classes and ��� If I did not take your picture� you must submit one to me� Please complete both of
these promptly� And if you have not given me 	� for copy charges� please do so�

�	 
�� points� Ms	 Jones has an algorithm which she proved 
correctly� runs in time O
�n�	 She
coded the algorithm correctly in C� yet she was surprised when it ran quickly on inputs of size up
to a million	 What are at least two possible explanations of this behavior� 
Two rather dierent
plausible explanations will receive full credit	 If you give additional explanations� you may lose points
for unplausible ones	 Be brief in your explanations	�

I can think of four explanations� the �rst of which I think are most plausible�

� Perhaps the algorithm runs in linear time	 O
�n� means at most time a constant times �n	
Even a linear time algorithm is O
�n�	 �
�n� would mean the algorithm takes time at least

a constant times �n	

� Perhaps the input to her program is not the worst case input� she is entered the easiest

inputs deal with	

� The exponential behavior doesn�t kick in until n is huge	

� The following two explanations are implausible since ���������� is so ridiculously huge	 After
all� the number of particles in the visible universe is less than ����� or ����	 These implausible
explanations are 
a� The constant in front of �n is extremely small� and 
b� The computer
is fast	

You earned �� points for each clear good explanation and 
 points for an unplausible one to
maximum of ��� If you gave any unplausible explanation� you received a maximum of �� points�

�	 
�� points� Consider the following recurrence� where a� b � � and a� b � ��

T 
n� � � � if n � �
T 
n� � T 
an� � T 
bn� � n� if n � �

Prove T 
n� � O
n�	

�



We want to show T 
n� � cn for some value of c	 Then�

T 
n� � T 
an� � T 
bn� � n

� can� cbn� n 
by induction�
� 
c
a� b� � ��n
� cn 
for c su�ciently large but �xed as below	�

Now� c
a� b� � � � c if c � �

��a�b

which is greater than zero since a� b � ��� so we�ll choose the

�xed constant to be c � �

��a�b
	 For the base case of n � �� T 
n� � � � c � n for n � �	 The most

common mistake was the following fallacious proof �or an elaborately disguised variant��

T 
n� � T 
an� � T 
bn� � n

� O
n� �O
n� � n �by induction�
� O
n�

The reason this is fallacious is because it is critical that the same constant c be used for all n �once
n exceeds some small n�� if you wish�� Any proof which failed to take advantage of the fact that
a � b � � fell into this trap� In fact� when a � b � �� the growth should be �
n logn�� and when
a� b � �� the growth should be exponential in n�

�	 
�� points� For which type of input data is Human coding more likely to achieve better compression�
random characters or English text	 Why� 
A one sentence explanation is su�cient	�

English text	 Human coding compresses better the more repetition is present	 Short code�
words will be used to express common letters or words	

� � �	 The following text refers to the next two problems�

You are going on a long trip	 You start along the road at mile post �	 Along the road that you will
travel there are n hotels at mile posts a� � a� � � � �� an 
ai is measured from the start of the trip�	
When you choose to stop� you must stop at one of these hotels 
but you can choose which hotels you
want to stop at�	 You must stop at the last hotel� which is your destination	 You decide that the
ideal distance to travel per day is ��� miles 
plus or minus a few is ok�� so if x is the number of miles
traveled in one day� you assign a cost function of 
���� x�� that you want to minimize	

�	 
�� points� Design a dynamic programming algorithm to determine your total cost when you choose
to stop at those hotels which minimize the total cost function	 
Hint� Let Ci be the minimum cost
if you were to start at mile � and complete your trip at hotel i	�


a� 
�� points� Give a recursive rule for computing Ci	


b� 
�� points� Explain how you can use dynamic programming to compute Ci in polynomial time	


c� 
� points� Analyze the running time of your dynamic programming algorithm	

�



Let Ci be the minimum cost in which to break your travel up� assuming that your last stop is
hotel i	 Let�s let hotel � denote our starting point	 As a basis� let C� � �	 In general� to compute
Ci� we consider all possible places k� � � k � i� that we might have stopped the night before	 The
cost of having k as the previous stop is the minimum cost of getting to hotel k� followed by the
cost of traveling in one day from k to i� a distance of 
ai � ak�	 Minimizing over all k gives the
following rule�

Ci � min � � k � i
�
Ck � 
���� 
ai � ak��

�

�

A dynamic programming problem simply loops through all i 
from � to n�� building a linear
array for the Ci values using the recurrence to calculate Ci from C�� 	 	 	 � Ci��	 Cn is the minimum
cost we�re looking for	 If� in the table� for each values of i we also �ll in the value of k which
minimizes Ci� we can recreate the actual hotels we should stop at	

It takes linear time to calculate each value of Ci� for a total time of O
n��	

For part a�� you got at least �� points if you could write out the recurrence relation� plus or
minus minor errors �wrong base case� incorrect minimizing bounds� informal but clear description��
Some credit was given for an incorrect formalization� as long as it was a recurrence relations�

Common mistakes included� not minimizing over a varying number of possibilities� using Ci��

in the place of Ck� and assuming you already knew the list of optimal stops to compute Ci� There
was also some confusion as to where the recurrence should begin� at i � n or i � �� The problem
is symmetric� Therefore if you de�ned Ci with your base case at Cn� you were not penalized but
your de�nition of Ci had to be consistent �i�e� you could not use Ci�� to de�ne Ci� since the
recursion would never stop��

If you decided to use a dierent critter with more than one index and de�ned it correctly� you
were not penalized for that� However� your answer to part b� had to be consistent in any case
with your answer to part a�� That is if you were using a one�dimensional critter in a�� you were
expected to describe a one�dimensional array in b��

For part b�� if you mentioned that you needed a one�dimensional array you were given � points�
Saying that the Ci�s had to be computed in increasing order received another � points� If you got
to that point then the remaining 
 points were for mentioning that dynamic programming allowed
you to work through the subproblems only once and reuse your work�

A very common mistake here was mentioning the need for a two�dimensional table �costs from
any hotel to any hotel� after de�ning a critter with only one index in part a�� This received no
credit since the table described was irrelevant to the problem� Another common error was to build
a table from any hotel to any hotel for the cost function� which can always be calculated as the
need arises� Again� since the table was irrelevant� no credit was awarded�

For part c�� you had to answer consistently with your previous answers� If you described an
O
n�� algorithm in a� and b�� and then answered O
n��� you were awarded no credit� If you just
wrote down the answer with no explanation� or if you gave a correct explanation but a wrong
answer� you were given � points� If you could write down the order of entries in the array� or the
order of each computation in the array� that was also worth � points�

�	 
�� points� Propose and discuss a greedy heuristic for �nding which hotels to stop at	 
Your heuristic
need not actually minimize the total cost function	�


a� 
�� points� Propose a reasonable linear�time greedy heuristic for the problem	

�




b� 
�� points� Either prove your greedy heuristic minimizes the total cost function� or give a
counterexample demonstrating how your heuristic may fail to give the optimum set of hotels to
stop at	


c� 
� points� Analyze the running time of your heuristic	

One greedy heuristic is each day stop at the hotel up ahead nearest to ��� miles from where
you started travel that day	 Alas� this doesn�t give the best schedule for hotels at mile posts ����
���� ���� since it�s better to stop at ��� the �rst night 
for a total cost of ���� ��� � ���� rather
than ��� the �rst night 
for a total cost of �� � ��� � ����	

This can be made to run in linear time� since each day we need only consider hotels up to
the next one � ��� miles ahead� and even that hotel will only be considered twice 
today and
tomorrow�	

For the greedy heuristic� I took o � points if your solution was not locally optimal� Common
examples of non�locally optimal heuristics took the last hotel within ��� miles or the �rst hotel at
least ��� miles from the last stop� Notice� some of these heuristics are not guaranteed to always
�nd a solution� Also� some solutions said stop at a hotel that�s within a �few� miles of ��� miles
from the last stop� This makes no sense what a �few� means� These also lost � points�

For part �b�� a proof that your greedy heuristic works lost �� points�

When analyzing your running time� you had to explain that each hotel was considered at most
twice� Simply saying each hotel was considered at least once shows it�s running time is �
n��
Such an argument or a similar mistake in your analysis lost � points� No points were given if
no explanation was given of why the running time is O
n� or it was only shown to be something
non�linear� such as O
n��� Notice you can not �nd those hotels closest to some mile mark in
constant time� This would actually take O
logn� time since it would require a binary search� It
is also incorrect to analyze your running time based on the number of miles driven� It should be
dependent on� n� the number of hotels�

�



�	 
�� points� Consider the problem of �nding the largest� second largest and third largest from a
collection of � elements using comparisons	 
The � largest elements should be reported in decreasing
order	� You may assume the elements are distinct	

Let u be an upper bound on the number of comparisons required to solve this problem		 
The value
of u would be a number� like ����� since there is no parameter such as n in the problem	� Let l be a
lower bound on the number of comparisons required	


a� 
� points� Is it possible that u � l� What would you conclude�


b� 
� points� Is it possible that u � l� What would you conclude�


c� 
� points� Is it possible that u � l� What would you conclude�


d� 
� points� Find an upper bound� u� on the number of comparisons required	


e� 
� points� Find a lower bound� l� on the number of comparisons required	 
I recommend an
information theoretic bound� since it�s simplest	�


You�ll certainly receive full credit for parts 
d� and 
e� if ju � lj � �	 A little worse should be ok�
too	�

�




a� No	 Since l lower bounds the running time of any algorithm� a mistake must have been
made	


b� Yes	 Either a better lower bound or a better algorithm exists	 The best algorithm takes
between l and u comparisons	


c� Yes	 Algorithm A is an optimal algorithm	


d� I�ll propose an algorithm� A� which takes �� comparisons	 Find the maximum using a
tournament 
� comparisons�	 Then �nd the largest among those three who lost to the
winner of the tournament 
� comparisons�	 Then �nd the largest among those 
at most
four� remaining who lost to either the largest or second largest 
� comparisons�	 This yields
u � � � � � � � �� comparisons	

A better algorithm selects the elements to compare in the second round in the right order to
guarantee only three candidates for third largest	 This yields �� comparisons� but requires
justi�cation	


e� There are � � � � � � ��� possible outputs	 An information theoretic lower bound is therefore
log
� � � � �� � � comparisons	

Another possible lower bound 
not as good� is � to �nd the maximum alone	 More sophis�
ticated lower bounds are possible	

You earned � points for the right answers �yes or no� to parts a�c� You earned full credit if
you demonstrated an understanding for what a lower bound is in your reasons for a�c� By far�
the most common mistake was to think that a lower bound is the best case running time for an
algorithm� This is false� The performance of an algorithm is measured by the worst case input�
whether we�re talking about a lower bound or an upper bound� A lower bound lower bounds the
performance of all possible algorithms which solve a problem�

Unfortunately� since the original phrasing of the question referenced a speci�c algorithm� A�
many students thought the lower bound referred to the performance of that algorithm� If you
made this interpretation� the lower bound should have been on the worst case performance of the
algorithm� On occasion� this would be of interest when a speci�c algorithm�s performance is hard
to analyze completely� Because of the confusion� I gave a full � points� I even gave full credit if
you thought the lower bound referred to the performance of an algorithm on best input� but you
should be aware that this is rarely of interest� You should never again use best case input

as a measure of a problem�s performance in this course� even though you got credit this
time�

For the upper bound� if you sorted �taking n logn � ��� comparisons� you received � points� If
you said sorting takes O
n logn�� that means that it takes a constant times n logn comparisons� so
this does not necessarily yield n � log n� If you found the maximum � times in ����� comparisons�
resp�� you earned 
 points�

For the lower bound� if you stated clearly that it takes at least as long as �nding the maximum
of � elements earned 
 points� A common mistake here was to give a better algorithm than you
gave in part �d�� �Perhaps you thought it would be the best possible� but you didn�t prove it��
This just provides a better upper bound for the problem�

�


