Lanzara midterm 2 Prob Soln
Friday, November 07, 2008
10:25 AM
a) Cube will remain moving at initial velocity, vo
b)

$$
\begin{aligned}
& F=m a=-k x \\
& -x=\frac{m a}{k} \\
& x=-5 m=5 m \text { compression }
\end{aligned}
$$

c) correct soln

$$
\begin{aligned}
& \sum F y=0 \Rightarrow N=m g \\
& f_{\text {sima }}=\mu_{s} N=\mu_{s} m g=1 \mathrm{~N} \\
& m a=(0.2 \mathrm{~kg})\left(5 \mathrm{~m} / \mathrm{s}^{2}\right)=1 \mathrm{~N}
\end{aligned}
$$

Static Friction provides enough force to give the cube a $5 \mathrm{~m} / \mathrm{s}^{2}$ acceleration spring displacement $=0$

Alternate sols

$$
\begin{aligned}
& {\underset{f s}{ }}_{m a}^{\text {Fspring }_{s}} N=m g \\
& m=f_{s}=\mu_{s} m g=1 N \\
& -x=\frac{m a+f_{s}}{k}=+10 m \\
& x=10 m \text { compression }
\end{aligned}
$$

Solution for Problem 2

1) Before the collision the total momentum is $m v_{0}+M v_{0}$. The total momentum should be conserved, since there are no external forces in x-direction. Also since there is no force in x -direction acting on the block m (no friction) during the collision, the momentum of the block won't change (just after the collision).

Then we can find the velocities of the block and carts:
the velocity of the block v_{0}
the velocity of two carts after the collision $M v_{0}=2 M v_{c}$ and therefore $v_{c}=\frac{v_{0}}{2}$
2) To find the height we can use the conservation of energy. The energy just after the collision (we can't use the initial energy, since the collision is inelastic) is $\frac{m v_{0}^{2}}{2}+\frac{2 M v_{c}^{2}}{2}$. At the maximum height the relative velocity of the block (respect to carts) is zero, so the block and the carts move as a whole system. To find this velocity we again can use the conservation of momentum (this velocity is not equal to v_{c}).

$$
\begin{gathered}
(m+M) v_{0}=(m+2 M) v_{f} \\
v_{f}=\frac{m+M}{m+2 M} v_{0}
\end{gathered}
$$

The conservation of energy gives us:

$$
\begin{gathered}
\frac{m v_{0}^{2}}{2}+\frac{2 M v_{c}^{2}}{2}=m g h+\frac{(m+2 M) v_{f}^{2}}{2} \\
m v_{0}^{2}+2 M\left(\frac{v_{0}}{2}\right)^{2}=2 m g h+\frac{(m+M)^{2}}{(2 M+m)} v_{0}^{2} \\
h=\frac{M v_{0}^{2}}{4 g(2 M+m)}
\end{gathered}
$$

SOLUTION
3)

Energy $E_{1}=\frac{1}{2} k x_{0}^{2}+\frac{1}{\frac{2}{8}} M g h_{0}$
Energy at $2 E_{2}=\frac{1}{2} m v_{2}^{2}$
Energy at $3 E_{3}=M g h^{\prime}$

$$
\begin{align*}
& E_{1}-E_{2}=\text { Work clone by friction }=\mu M g \cos \theta \cdot \frac{h_{0}}{\sin \theta} \\
& E_{2}-E_{3}=\text { Work done by friction }=\mu M g \cos \theta \cdot \frac{h^{\prime}}{\sin \theta} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& E_{1}-E_{3}=\mu M g \cot \theta\left(h_{0}+h^{\prime}\right) \\
& \frac{1}{2} k x_{0}^{2}+M g h_{0}-M g h^{\prime}=\mu M g \cot \theta\left(h_{0}+h^{\prime}\right) \\
& \frac{1}{2} k x_{0}^{2}+h_{0}(M g-\mu M g \cot \theta)=h^{\prime}(M g+\mu M g \cot \theta) \\
& h^{\prime}=\frac{1}{2} \frac{k x_{0}^{2}+h_{0}(M g-\mu M g \cot \theta)}{(M g+\mu M g \cot \theta)}
\end{aligned}
$$

Problem 4 Solution
a) Pulley must rotate clockwise because there is no torque to cancel the torque due to the force of tension
\Rightarrow hanging M must accelerate down

$$
\Rightarrow T<M g
$$

\Rightarrow Rod has angular acceleration \oslash

\therefore No equlibrimes
b)

Hanging block
\overbrace{T}
$\underbrace{T R=I \alpha_{s}}_{E_{q}}$ (choosing clockwise Eq (2) as positive)

Spool

$$
\begin{aligned}
(T-M g) L & =-I_{\text {total }} \alpha_{R} \\
& =-M L^{2} \alpha_{R} \quad\left(\because M_{\text {spool }} \ll M,\right. \\
& R \ll L)
\end{aligned}
$$

Rod
(α_{R} is the magnitude of the angular accel.

$$
o \underbrace{(M g-T) L=M L^{2} \alpha_{R}}_{E_{q}(3)}
$$

of the rod+ fixed mass + spool system)

Relation between 'a's'\& ' α 's': $\underbrace{a=\alpha_{s} R-\alpha_{R} L}_{E_{q}(4)}$
Some algebra with the 4 equations gives

$$
T=\frac{M g}{1+\frac{M R^{2}}{2 I}} \quad, \quad a=\frac{g}{1+\frac{2 I}{M R^{2}}}
$$

* If you write. E_{q}, (4) as $a=\alpha_{s} R$ and ignore the motion of the rod, youll get

$$
T=\frac{M g}{1+\frac{M R^{2}}{I}}, a=\frac{g}{1+\frac{I}{M R^{2}}}
$$

