University of California at Berkeley
 Department of Physics
 Physics 8A, Fall 2009

Midterm 1

Oct 8, 2009
You will be given 100 minutes to work this exam. No books are allowed, but you may use a handwritten formulae sheet no larger than one side of an $81 / 2^{\prime \prime}$ by $11^{\prime \prime}$ sheet of paper. No electronics of any type (cell phones, calculators, etc) are allowed. Your description of the physics involved in a problem is worth significantly more than any numerical answer. Show all work, and take particular care to explain what you are doing. Please use the symbols described in the problems, tell us why you're writing any new equations, and label any drawings that you make. Write your answers directly on the exam, and if you have to use the back of a page or the blank sheet from the back of the exam make sure to put a note on the front. Do not use a blue book or any extra scratch paper.

$$
\begin{aligned}
& \vec{V}=d \vec{X} / d t \quad \vec{a}=d \vec{V} / d t \quad x(t)=x_{0}+v_{0} t+\frac{1}{2} a_{0} t^{2} \quad Y(t)=v_{0}+a_{0} t \quad V^{2}(x)=v_{0}^{2}+2 a x \\
& \sum \vec{F}=m \vec{a} \quad F=m v^{2} / R \quad F=m g \quad \vec{P}=\sum m_{i} \vec{V}_{i} \quad g=10 \mathrm{~m} / \mathrm{s}^{2} \\
& x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}=\sum m_{i} x_{i} / \sum m_{i} \quad V_{c m}=\frac{m_{1} v_{1}+m_{2} V_{2}}{m_{1}+m_{2}}=\sum m_{i} V_{i} / \sum m_{i} \\
& F_{f r}=\mu_{k} F_{N} \quad F_{f r} \leq \mu_{s} F_{N} \quad W=\vec{F} \bullet \vec{X} \quad \vec{P}=m \vec{V} \quad F_{W . R .}=\frac{1}{2} C \rho A v^{2} \quad b=l \cos \theta \quad a^{2}+b^{2}=c^{2}
\end{aligned}
$$

$$
\sin 45^{\circ}=\cos 45^{\circ}=0.7 \quad \cos 60^{\circ}=\sin 30^{\circ}=0.5 \quad \sin 60^{\circ}=\cos 30^{\circ}=0.9
$$

NAME: \square

SID NUMBER: \qquad

DISCUSSION SECTION NUMBER: \qquad

DISCUSSION SECTION DATE/TIME: \qquad

NAME OF YOUR DISCUSSION GSI: \qquad

1	
2	
3	
4	
Total	

1)

.) (25 points) Fast Break.
Stanford has the basketball and they're up by a point, but in the final second of the game a Cal player dives for the ball and manages to hurl it upwards from a height of only 1 m above the ground at a steep angle of 60° from the horizontal with an initial speed of $v_{i}=12$ m / s. The basketball is 0.5 kg , and the basket is located 15 m away from the Cal player as shown in the diagram. You may use $\sin \left(60^{\circ}\right)=\cos \left(30^{\circ}\right)=0.9$.

a) What is the magnitude of the horizontal component of the ball's initial velocity?
b) How much time does it take the ball to reach the basket?
c) What is the kinetic energy of the ball at its highest point?
d) How high is the ball above the ground at its highest point?
e) What is the direction and magnitude of the ball's acceleration right before it lands in the basket?
a) $v_{i} v_{i f i} \sin \left(60^{\circ}\right)$ horizontal component of velocity: $v_{i x}=v_{i} \cos \left(60^{\circ}=\frac{1}{2} \cdot 12 \mathrm{~m} / \mathrm{s}=6 \mathrm{~m} / \mathrm{s}\right.$,
${ }^{4} \rightarrow_{x} v_{i} \cos \left(60^{\circ}\right)$
b) $a_{x}=0 \Rightarrow$ coust. v_{x} so $\Delta x=v_{x} \cdot \Delta t \Rightarrow$ time to reach basket $=\Delta t=\frac{\Delta x}{\sqrt[v]{x}}=\frac{15 m}{6 m / s}$
c) at highest point, $v_{y}=0$ so $|\vec{v}|=v_{x}=v_{x_{0}}$ since $d_{x}=0$

$$
K E_{\text {top }}=\frac{1}{2} m v_{x_{0}}^{2}=\frac{1}{2} \frac{1}{2} \mathrm{~kg}(6 \mathrm{~m} / \mathrm{s})^{2}=3 \cdot 3 j=9 j
$$

d) cons. of E :

$$
\left(K E+P E_{g}\right)_{\text {top }}-\left(K E .+P E_{g}\right)_{i}=W \text { Won } \rightarrow 0 \text { since } \begin{array}{r}
\text { and am } \\
\text { accounting } \\
\text { for gravity }
\end{array}
$$ accounting

for gravity

$$
\begin{aligned}
& 9 j+m g y_{\text {top }}-\left(\frac{1}{2} m v_{i}^{2}+m g y_{i}\right)=0 \quad \text { for } g \text { ra } \\
& m g y_{\text {top }}=-9 j+\frac{1}{2} m v_{i}^{2}+m g y_{i} \\
& y_{\text {top }}=-\frac{9 j}{m g}+\frac{1}{2} \frac{1 x v_{i}^{2}}{\operatorname{Lrg}}+\frac{m g_{g}}{\operatorname{mgg}} y_{i} \\
& y_{\text {top }}=-\frac{9 j}{\frac{1}{2} \mathrm{~kg} 10^{m / s^{2}}}+\frac{\left(12 m_{s}\right)^{2}}{210^{m / s^{2}}}+1 m \\
&=-\frac{9}{5} m+\frac{144}{2 \cdot 10} m+1 m \\
&=-1.8 m+\frac{72}{10} m+1 m \\
&=(-1.8+7.2+1.0) m \\
&=6.4 m
\end{aligned}
$$

e) $F B D$

$$
a_{y}=-g \text { so }|\vec{a}|=g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

2) (25 points) Sandbox on an incline.

A block with mass $M_{l}=6 \mathrm{~kg}$ is initially at rest on a rough horizontal surface with a static coefficient of friction of $\mu_{s}=1 / 4$ and a kinetic coefficient of friction of $\mu_{k}=1 / 5$. The block is connected with a rope to an open box that is very slowly being filled with sand on a frictionless 30° incline. The rope and pulley are ideal.
a) Draw a free body diagram to indicate all forces acting on the block M_{l} before it starts to move.

b) Draw a free body diagram for the box of sand.
c) What is the total mass M_{2} of the box of sand right when the box starts to slip down the surface?
d) How much work does friction do on the block as the block slides 0.5 m ?
e) How much work does gravity do on the box of sand as the box slides 2.0 m along the slope?
a)

 $M_{b} g \cos \left(30^{\circ} \frac{1}{30^{\circ}} M_{b} g M_{b} g \sin \left(30^{\circ}\right)\right.$

$$
T=M_{b} g \sin \left(30^{\circ}\right)=M_{b} 10^{m / 5^{2}} \frac{1}{2}=M_{b} \cdot 5 \frac{m}{s^{2}}
$$

$$
\text { (1) } \&(2) \Rightarrow F_{f r_{s}}=M_{b} \cdot 5 \mathrm{~m} / \mathrm{s}^{2}-(3)
$$

$$
\begin{aligned}
F_{f_{r}} & \leq M_{s} F_{N_{1}} \\
& \leq \frac{1}{4} M_{1} g \\
& \leq \frac{1}{4} 6 \mathrm{~kg} 10 \mathrm{~m} / \mathrm{s}^{2}=15 \mathrm{~N}
\end{aligned}
$$

so the maximum force of friction is 15 N plug that into eq.(3):
see back for d) \& e)

$$
\begin{aligned}
& F_{f_{r_{s}}}=15 \mathrm{~N}=M_{b} \cdot 5 \mathrm{~m} / \mathrm{s}^{2} \\
& \max \text { so } M_{b}=\frac{15 \mathrm{~N}}{5 \mathrm{~m} / \mathrm{s}^{2}}=3 \mathrm{~kg}
\end{aligned}
$$

Problem 2 continued:
d)
e)

$$
\begin{aligned}
W_{\text {gan }} & =\vec{F}_{\text {gand box }} \cdot \Delta \vec{X}_{\text {box }} \\
& =m_{2} g \sin \left(30^{\circ}\right) \Delta X_{\text {box }} \\
& =3 \mathrm{~kg} 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} 1 / 22 \mathrm{~m} \\
& =30 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\text { I use the mass } \quad=30 j \leftarrow \begin{aligned}
& \text { positive because } \\
& \text { force of gravity }
\end{aligned}
$$ force of gravity has a positive compon. emt in the direction because the sand is only being added to the box very slowly of motion down the slope

so the mass wont
change hardly at all while the boxslides
down the slope

$$
\begin{aligned}
& W_{\text {freon block }} \overline{F_{f_{r}}} \cdot \overrightarrow{\Delta x_{\text {block }}}=F_{f_{r}} \Delta x=-\mu_{k} F_{N} \Delta x \\
& {\left[M_{1} \xrightarrow{\Delta x}\right.} \\
& \stackrel{{ }_{F_{f r}}}{\longrightarrow x} \\
& =-\mu_{k} m_{1} g \Delta x \\
& =-\frac{1}{5} 6 \mathrm{~kg} 10 \mathrm{~m} / \mathrm{s}^{2} \frac{1}{2} \mathrm{~m} \\
& =-\frac{6 \cdot 10}{2 \cdot 5} \operatorname{kg} \frac{\mathrm{~m}^{2}}{5^{2}} \\
& \text { - }- \text { work is negative } \\
& -6 j \leftarrow \text { because Force of friction } \\
& \text { opposes the motion }
\end{aligned}
$$

3) (25 points) Spring gun and frictionless track. A spring with spring constant $k_{l}=92 \mathrm{~N} / \mathrm{m}$ is compressed by $\Delta \mathrm{y}_{1}=1 \mathrm{~m}$ and then released, which shoots a $1 / 2 \mathrm{~kg}$ ball straight upward and into a frictionless track that forms a halfcircle with $r=4 \mathrm{~m}$ as shown in the diagram. The ball comes down on the other side of the ramp and compresses a second spring by $\Delta y_{2}=2 \mathrm{~m}$, slowing it to a stop at its initial height above the ground. The top of the track is 6 m above the initial height of the ball.

a) How much potential energy is stored in spring 1 before the ball is shot upwards?
b) When the ball is at the top of the curved track, what is the direction and magnitude of its acceleration?
c) What is the direction and magnitude of the normal force acting on the ball at the top of the track?
d) What is the spring constant k_{2} of the second spring?
e) How much work is done on the ball by the track from the time it is shot upwards by the spring until it reaches the top of the track?
a) $P E_{. s p_{1 i}}=\frac{1}{2} k\left(O y_{1 i}\right)^{2}=\frac{1}{2} 92 \frac{\mathrm{~N}}{\mathrm{~m}}(1 \mathrm{~m})^{2}=46 \mathrm{Nm}=46 j$
b) \vec{a} at top of track points straight down sinceall forces point down: FED:

$$
m g \| \in F_{N}
$$

$$
a_{\text {top }}=\frac{v_{\text {top }}^{2}}{r} \quad \text { find } v_{\text {top }} \text { : cons. of Energy: }
$$

hf

$$
\text { So: } a_{\text {top }}=\frac{v_{\text {top }}^{2}}{r}=\frac{(8 m /)^{2}}{4 \mathrm{~m}}=\frac{64 \mathrm{~m}^{2} / \mathrm{s}^{2}}{4 \mathrm{~m}}=16 \mathrm{~m} / \mathrm{s}^{2}
$$

downward

$$
\downarrow_{y} \text { c) N2L: } y:
$$

see back

$$
\begin{aligned}
& \begin{array}{l}
\text { find } v_{\text {top }} \text { : cons. of Energy: } \\
\left(K E+P Q_{s p}^{0}+P E_{g}\right)_{f}-\left(K E^{0}+P E_{\text {sp }}+P E_{g}\right)_{i}=y 0_{0 n}^{0} \\
1 / 2 m v_{\text {top }}^{2}+m g y_{\text {top }}-1 / 2 k\left(\Delta y_{1 i}\right)^{2}+m g y_{i}=0
\end{array} \\
& \begin{array}{l}
\text { nd } v_{\text {top }}: \text { cons. on } \\
\left.K E+P E_{s p}^{0}+P E_{g}\right)_{f}^{0}-\left(K E^{0}+P E_{\text {sp }}+P E_{g}\right)_{i}=y v_{\text {top }}^{0}+m g y_{\text {top }}-1 / 2 k\left(\Delta y_{1 i}\right)^{2}+m g y_{i}=0 \\
1 / 2 m v_{\text {tor }}^{2}
\end{array} \\
& \frac{1}{2} m v_{\text {top }}^{2}=m g\left(y_{i}-y_{\text {top }}\right)+\frac{1}{2} k\left(\Delta y_{1 i}\right)^{2} \\
& v_{\text {top }}=\sqrt{\frac{m g}{\frac{m}{h}} 2\left(y_{i}-y_{\text {top }}\right)+\frac{x}{7} \frac{k}{m}\left(\Delta y_{i i}\right)^{2}} \\
& \begin{array}{l}
=\sqrt{20 \mathrm{~m} / \mathrm{s}^{2}(-6 \mathrm{~m})+\frac{92 \mathrm{~N} / \mathrm{m}}{1 / 2 \mathrm{~kg}}(1 \mathrm{~m})^{2}} \\
=\sqrt{-120 \frac{\mathrm{~m} \frac{2}{\mathrm{~s}^{2}}+184 \frac{\mathrm{kgm} / \mathrm{s}^{2}}{\mathrm{cg} \mathrm{~m}^{2}}}{}}
\end{array} \\
& \begin{array}{l}
=\sqrt{20 \mathrm{~m} / \mathrm{s}^{2}}(-6 \mathrm{~m})+\frac{92 \mathrm{~N} / \mathrm{m}}{1 / 2 \mathrm{~kg}}(1 \mathrm{~m})^{2} \\
=\sqrt{-120 \mathrm{~m} \frac{2}{\mathrm{~s}^{2}}+184 \frac{\mathrm{kgh} / \mathrm{s}^{2}}{\mathrm{sg} \mathrm{~m}} \mathrm{~m}^{2}}
\end{array} \\
& =\sqrt{64 \mathrm{~m}^{2} / \mathrm{s}^{2}} \\
& =8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Problem 3 cont.:
d) cons. of E :

$$
\begin{aligned}
& \left(K . E_{1}+P \cdot E_{g}+P \cdot E_{s p_{1} 1}+P \cdot E_{s p_{2}}\right)_{f}-\left(K . E_{1}+P \cdot E_{g}+P \cdot E_{s p_{1}}+P \cdot E_{s p_{2}}\right)=\gamma_{0 n} \rightarrow 0 \\
& 0+0+0+\frac{1}{2} k_{2}\left(\Delta y_{2}\right)^{2}-\left(0+0+\frac{1}{2} k_{1}\left(\Delta y_{1}\right)^{2}+0\right)=0 \\
& \frac{1}{2} k_{2}\left(\Delta y_{2}\right)^{2}=\frac{1}{2} k_{1}\left(\Delta y_{1}\right)^{2} \\
& k_{2}=k_{1} \frac{\left(\Delta y_{1}\right)^{2}}{\left(\Delta y_{2}\right)^{2}} \\
& =92 \mathrm{~N} \cdot \frac{(1 \mathrm{~m})^{2}}{(2 \mathrm{~m})^{2}} \\
& =92 \cdot \frac{\mathrm{~N}}{\mathrm{~m}}\left(\frac{1}{4}\right) \\
& \begin{array}{r}
23 \\
4 \longdiv { 9 2 } \\
\frac{8}{12}
\end{array} \\
& \text { set to zero } \\
& \text { because gram. } \\
& \text { and spring's } \\
& \text { accounted for } \\
& \text { w/P.E. terms } \\
& \text { AND } \\
& \text { track candy do } \\
& \text { work on ball } \\
& \text { because track is } \\
& \text { Frictionless so } \\
& F_{\text {track }}=F_{N} \text { only }
\end{aligned}
$$

e) $W_{o n}=\overrightarrow{F_{o n}} \cdot \overrightarrow{\Delta x}$ but $\vec{F}_{\text {Track on ball }}$ is a normal force since the track is frictionless, so $\vec{F}_{\text {track onball }}=\vec{F}_{N}$ and $\vec{F}_{N} \cdot \overrightarrow{O X}=0$ everywhere along the balls trajectory so:

$$
W_{\text {track on ball }}=0 j
$$

track does no work!
4) (25 points) Raising the bar

A construction worker is raising a 4 kg bar by pulling upward on a massless rope that passes around an ideal pulley mounted to the bar; the rope is tied to the beam he's standing on. The bar rises at a constant speed of $0.5 \mathrm{~m} / \mathrm{s}$ as it moves a distance of $\Delta x=2 \mathrm{~m}$.
a) Draw and clearly label a free body diagram of the bar.
b) What is the tension in the rope?
c) How much work was done by the construction worker on the rope?
d) Now, without stopping the bar, the worker pulls with twice as much force as he was pulling before, and the bar rises another 2 m . What is the direction and magnitude of the bar's acceleration?
e) What is the final kinetic energy of the bar?
a) FBD for bar:

$$
\sum_{\downarrow}^{T \uparrow F_{g}=m g} \uparrow_{X}
$$

b) N2L: $X: T+T-m g=m \alpha_{x} O$ since velocity

$$
\begin{aligned}
2 T & =m g \\
T & =\frac{1}{2} \mathrm{mg} \\
T & =\frac{1}{2} 4 \mathrm{~kg} 10^{\mathrm{m}} / \mathrm{s}^{2} \\
& T=20 \mathrm{~N}
\end{aligned}
$$

c)

$$
\begin{aligned}
W_{\text {man on rope }} & =F_{x} \cdot \Delta X_{\text {rope }} \quad \begin{array}{l}
\text { due to the pulley arrangement, } \\
\text { twice as much rope must be } \\
\text { lifted as the distance the bar }
\end{array} \\
& =F_{\substack{\text { man } \\
\text { or ope } \\
\text { roves. so } \Delta X_{\text {rope }} \\
\text { move }}} 2 \Delta X_{\text {bar }} \\
& =T 2 \Delta X_{\text {bar }} \\
& =(20 \mathrm{~N})(2)(2 \mathrm{~m}) \\
& =80 \mathrm{Nm}=80 j
\end{aligned}
$$

$T_{i}^{\prime} \hat{i}^{\prime} T^{\prime}$
$\downarrow_{m g}$
$T^{\prime}=2 T$ because man is now pulling 2 times as hard
so NZC: $F_{\text {wetonbar }}=m a_{\text {bar }}$

$$
\begin{aligned}
& T^{\prime}+T^{\prime}-m g=m a_{\text {bar }} \\
& 2 T^{\prime}-m g=m a_{x} \\
& 4 T-m g=a_{x} \Rightarrow a_{x}=\frac{4 T}{m}-g=\frac{4 \frac{m g}{2}}{m}-g=2 g-g=g \\
& \text { so } a=10 \mathrm{~m} / \mathrm{s}^{2} \text { upwards }
\end{aligned}
$$

see back

Problem 4 cont.:
e)
$x \uparrow_{v}^{j_{0}^{\prime}} T^{T^{\prime}}$
conservation of E :

$$
\left.\begin{array}{l}
\text { conservation of }: \\
\begin{array}{rl}
\left(K E+P E_{g}\right)
\end{array} f_{f}-\left(K E+P E_{g}\right) i=\text { Won } \begin{array}{c}
\text { (Force f gravity } \\
\text { is accounted } \\
\text { forby P. } E_{g} \text { terns }
\end{array}
\end{array}\right)
$$

Here's another way to doit:

$$
\text { const.a: } a=+10 \mathrm{~m} / \mathrm{s}^{2} \text { (frompartd) } v_{i}=\frac{1}{2} \mathrm{~m} / \mathrm{s} \quad \Delta x=2 \mathrm{~m}
$$

const.a:

$$
\begin{aligned}
v_{f}^{2} & =v_{i}^{2}+2 a \Delta x \\
v_{f}^{2} & =\left(\frac{1}{2} \mathrm{~m} / \mathrm{s}\right)^{2}+2\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~m}) \\
v_{f}^{2} & =\frac{1}{4} \mathrm{~m}^{2} / \mathrm{s}^{2}+40 \mathrm{~m}^{2} / \mathrm{s}^{2}=40.25 \mathrm{~m}^{2} / \mathrm{s}^{2} \approx 40 \mathrm{~m}^{2} / \mathrm{s}^{2} \\
\text { K.E.f. } & =\frac{1}{2} m v_{f}^{2} \\
& =\frac{1}{2} \cdot 4 \mathrm{~kg} \cdot 40.25 \frac{\mathrm{~m}^{2} / \mathrm{s}^{2}}{} \\
& =80.5 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& \approx 80 \mathrm{j}
\end{aligned}
$$

i mg

