Solutions to Spring 2004-2 Thermodynamics 105:

1) Solution:

1a): This is a steady flow problem. The enthalpy change in stream 1 should be equal to the enthalpy change in stream 2
(h1 (w)-h2(w)) x mass flow rate of water =
Mass flow rate of air x (h2(air)-h1 (air) $=29 \times 1(\mathrm{~T} 2-\mathrm{T} 1)=29 \mathrm{x}$ T2
Stream 1: $29 * 1 *\left(T _m i x-0^{\circ} \mathrm{C}\right)$
For air $\Delta \mathrm{H}=29 * 1 * 99.63=2889.27$ kJoules
For steam 2889.27 $=18 *(\mathrm{~h} 1(\mathrm{w})-\mathrm{h} 2(2)) \rightarrow \mathrm{h} 2(\mathrm{w})=2514.98 \mathrm{KJ} / \mathrm{Kg}$
From steam table \rightarrow quality $=0.929$
1b) The entropy lost by stream 1 should equal the entropy gained by stream 2, an ideal heat engine, e. g. Carnot engine does not generate entropy

Entropy change of stream 2 (air) is integral of $(\mathrm{Cp} / \mathrm{T}) \mathrm{dT}=29 * 1 * \ln (373 / 273)=$ $29 * 0.312=9.05 \mathrm{~kJ} / \mathrm{K}-\mathrm{min}=$ entropy change of the air.

Stream 1 still at 99.63 C , some of the steam condenses, with entropy change: DeltaS_fg=6.04 kJ/(kg-K) Thus: $9.05=18 * 6.04 \mathrm{~kJ} /(\mathrm{kg}-\mathrm{K}) *(1-\mathrm{x})$ means that steam quality is $\mathrm{x}=0.916$

We now compute power by enthalpy balance: 18 * DeltaH_fg * (1-x) with x=0.916 $\Rightarrow 3382 \mathrm{~kJ} / \mathrm{min}=56.4 \mathrm{~kW}$ while air enthalpy change is same as part $1.2889 .27 \mathrm{~kJ} / \mathrm{min}$

Power is $3382-2889 \sim 482 \mathrm{~kJ} / \mathrm{min} \sim 8 \mathrm{~kW}$
Note that slightly more steam condenses in Part 1b (8.3%) compared to Part 1b. (7\%).
2) Solution
A) Work $=$ Heat * thermal efficiency

Thermal efficiency $=\left(1-1 / 8^{(1.4-1)}\right)=56.47 \%$
Work $=750 \mathrm{~kJ} \times 0.5647=423.5 \mathrm{k} \mathrm{J}$
B) \quad Heat $=750 \mathrm{~kJ} x$ (mass of air with turbo-charger)/mass of air without turbocharger
Work $=$ Heat x thermal efficiency (same as it only depends on compression ratio)
Mass of air with turbo-charger / mass of air without turbo-charger
$=\left(\mathrm{V} _\right.$cylinder $\left./ \mathrm{v}\right)$ _with turbo / (V_cylinder /v)_without turbo
= v _without turbo / v_without turbo
$=(\mathrm{T} / \mathrm{P})$ without turbo $/(\mathrm{T} / \mathrm{P})$ _with turbo

$$
\begin{aligned}
& \text { (using isentropic relation }\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)=\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)(\mathrm{k}-1) / \mathrm{k} \\
& \left.\mathrm{~T}_{-} \text {with turbo }=300 \mathrm{~K} *(120 \mathrm{kPa} / 100 \mathrm{kP})(1.4-1) / 1.4=316 \mathrm{~K}\right) \\
= & (300 \mathrm{~K} / 100 \mathrm{kPa}) /(316 \mathrm{~K} / 120 \mathrm{kPa})=1.139
\end{aligned}
$$

The amount of mass in the cylinder at BDC is increased by a factor of 1.139

$$
\text { Work }==750 \mathrm{~kJ} \times 1.139 \times 0.5647=482.4 \mathrm{~kJ}
$$

3) $1^{\text {st }}$ law $->\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{i}}->\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{Mu}_{3}->\mathrm{T}_{3}=\left(\mathrm{T}_{2}+\mathrm{T}_{1}\right) / 2$

Entropy change for partition 1 to final state
$\Delta \mathrm{S}_{3-1}=\mathrm{M} / 2\left[\mathrm{C} \ln \left(\mathrm{T}_{3} / \mathrm{T}_{1}\right)\right]$
Entropy change for partition 2 to final state
$\Delta \mathrm{S}_{3-2}=\mathrm{M} / 2\left[\mathrm{C} \ln \left(\mathrm{T}_{3} / \mathrm{T}_{2}\right)\right]$

$$
\begin{aligned}
\Delta \mathrm{S} & =\Delta \mathrm{S}_{3-1}+\Delta \mathrm{S}_{3-2}=\mathrm{M} / 2\left[\mathrm{C} \ln \left(\mathrm{~T}_{3} / \mathrm{T}_{1}\right)+\mathrm{C} \ln \left(\mathrm{~T}_{3} / \mathrm{T}_{2}\right)\right] \\
& =\mathrm{MC} / 2 \ln \left\{\mathrm{~T}_{3} / \mathrm{T}_{1} * \mathrm{~T}_{3} / \mathrm{T}_{2}\right\} \\
& =\mathrm{MC} \ln \left\{\mathrm{~T} 3 /(\mathrm{T} 1 * \mathrm{~T} 2)^{0.5}\right\}=\mathrm{MC} \ln \left\{\left(\mathrm{~T}_{2}+\mathrm{T}_{1}\right) /\left[2\left(\mathrm{~T}_{1} * \mathrm{~T}_{2}\right)^{0.5}\right]\right\}
\end{aligned}
$$

4) At the inlet $\mathrm{pg} 1=0.8721 \mathrm{kga} \rightarrow$
$\mathrm{W} 1=0.622 * \phi \operatorname{Pg} 1 /(\mathrm{p}-* \phi \operatorname{Pg} 1)=0.0040951 \mathrm{kgH} 2 / \mathrm{Kg}$ dry air
At the exit, $\operatorname{Pg} 2\left(\mathrm{~T}=65^{\circ} \mathrm{C}\right)=25.03 \mathrm{kPa}$.
Now $\phi 2=\mathrm{w} 2 \mathrm{p} 2 /(0.622+\mathrm{w} 2) / \mathrm{Pg} 2=0.13065 \rightarrow 13.06 \%$
5) solution:
from the psychrometric chart state 2: $\mathrm{w} 2=3.4 \times 10^{-3} \mathrm{~kg} / \mathrm{kg}$
by connecting the final point B to state 2 crossing the saturated state (state 1), we have $\mathrm{w} 1 \sim 8 \times 10^{-3}$, $\mathrm{wB}=5.5 \times 10^{-3} \mathrm{~kg} / \mathrm{kg}$,
a) the temperature at state 3 is obtained from state 1 (saturation point) following the constant enthalpy line until intersecting with the horizontal line (that connects state A and 2) $\rightarrow \mathrm{T} 3 \sim 23.5^{\circ} \mathrm{C}$
b) The mass flow rate ratio $\mathrm{ma} 1 / \mathrm{ma} 2=(\mathrm{wB}-\mathrm{w} 2) /(\mathrm{w} 1-\mathrm{wB}) \sim 0.96$

6) By connecting a line with the two points in the psychrometric chart, we find the line intersects the saturation line; therefore condensation will occur during mixing.
7) From the R134-a tables:

State 3: saturated liquid $\mathrm{P}=1.0164 \mathrm{MPa}, \mathrm{h} 3=105.3 \mathrm{~kJ} / \mathrm{kg}$,
State 3a: compressed liquid -> ha= $98.05 \mathrm{~kJ} / \mathrm{kg}$
State 4a: saturated vapor $\rightarrow \mathrm{h} 4 \mathrm{a}=235.31 \mathrm{~kJ} / \mathrm{kg}$
State 4: constant enthalpy throttling $\rightarrow \mathrm{h} 4=\mathrm{h} 3$
Control volume analysis for the subcooler $\rightarrow \mathrm{h} 1-\mathrm{h} 4 \mathrm{a}=\mathrm{h} 3 \mathrm{a}-\mathrm{h} 3$
$\mathrm{h} 1=265.76$; from superheated table $\rightarrow \mathrm{v} 1 \sim 0.1627 \mathrm{~m} 3 / \mathrm{kg}$
2) mass flow rate of R134-a $=1.2 \mathrm{~m} 3 / \mathrm{min} / \mathrm{v} 1=7.38 \mathrm{~kg} / \mathrm{min}=0.123 \mathrm{~kg} / \mathrm{s}$
3) QL rate $=7.38 \mathrm{~kg} / \mathrm{min}(235.31-98.05) \mathrm{KJ} / \mathrm{kg}=1012.97 \mathrm{~kJ} / \mathrm{min}=16.88 \mathrm{~kW}$
4) Work required by the compressor:

$$
\mathrm{s} 1=\mathrm{s} 2 \sim 1.04 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
$$

$\mathrm{p} 2=1.0164 \mathrm{Mpa} \rightarrow$ use the superheated table at 1.0 MPa
h2~ $313.2 \mathrm{~kJ} / \mathrm{kg}$
Wcompressor $=7.38 \mathrm{~kg} / \mathrm{min} \times(313.6-265.76) \mathrm{kJ} / \mathrm{kg}=442.8 \mathrm{~kJ} / \mathrm{min} \sim 7.38 \mathrm{~kW}$
$\mathrm{COP}=\mathrm{QL} / \mathrm{Wcompressor}=16.88 / 7.38=2.29$

8) Solution:

For gas turbine cycle, $\mathrm{P}_{2}=\mathrm{P}_{3}$, and $\mathrm{P}_{4}=\mathrm{P}_{1}$, we have the following relation $\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)=\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{(\mathrm{k}-1) / \mathrm{k}}=\left(\mathrm{P}_{3} / \mathrm{P}_{4}\right)^{(\mathrm{k}-1) / \mathrm{k}}=\left(\mathrm{T}_{3} / \mathrm{T}_{4}\right)$.

When $T_{2}=T_{4}$, we have
$\mathrm{T}_{1} \mathrm{~T}_{3}=\mathrm{T}_{2} \mathrm{x} \mathrm{T}_{2}$
With given $T_{3} / T_{1}=3$ the above equation gives
$3 \mathrm{~T}_{1} \times \mathrm{T}_{1}=\mathrm{T}_{2} \mathrm{xT}_{2}->\mathrm{T}_{2} / \mathrm{T}_{1}=(3)^{1 / 2}$
Using the isentropic relation,

$$
\mathrm{P}_{2} / \mathrm{P}_{1}=\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)^{\mathrm{k} /(\mathrm{k}-1)}=6.8
$$

