UNIVERSITY OF CALIFORNIA AT BERKELEY Department of Mechanical Engineering ME132 Dynamic Systems and Feedback

Midterm Examination I

Spring 2007

Closed Book and Closed Notes. Two 8.5×11 pages of handwritten notes allowed.

Your Name:

Please answer all questions and draw a box around your final answer for each question.

Problem:	1	2	3	Total
Max. Grade:	20	40	40	100
Grade:				

1 Problem

Neatly and accurately sketch, on the figure below, the solution x(t) for $t \ge 0$ to the differential equation

$$\dot{x}(t) = -3x(t) + 6u(t)$$

subject to the initial condition x(0) = -1 and the forcing function u(t), which is plotted in the figure below.

2 Problem

Let $y_p(t)$ be a particular solution for the following first order ODE

$$\dot{y}(t) + ay(t) = b u(t) \tag{1}$$

and assume that a > 0 and b > 0 are real constants.

1) Assume that the input u(t) is expressed as

$$u(t) = u_{\scriptscriptstyle R}(t) + j \, u_{\scriptscriptstyle I}(t),$$

where $j^2 = -1$ and $u_R(t)$ and $u_I(t)$ are real functions of time.

If a particular solution $y_p(t)$ for the above input is expressed as

$$y_p(t) = y_{p_R}(t) + j y_{p_I}(t),$$

write down the differential equations that $y_{p_R}(t)$ and $y_{p_I}(t)$ respectively satisfy.

2) Assume that

$$u(t) = e^{j\omega t},$$

where $\omega > 0$ is a real constant.

(a) A particular solution $y_p(t)$ for this input can be written as

$$y_p(t) = G(\omega) u(t).$$
⁽²⁾

Determine an expression for the complex number $G(\omega)$ in terms of the parameters a, b and ω .

(continues on the next page)

(b) The particular solution $y_p(t)$ in Eq. (2) can also be written as

$$y_p(t) = M(\omega) e^{(j\omega t + \phi(\omega))}$$
.

where $M(\omega) \ge 0$ and $\phi(\omega)$ are real. Obtain expressions for $M(\omega)$ and $\phi(\omega)$ in terms of the parameters a, b and ω .

3) Assume that

$$u(t) = \cos(\omega t) = \operatorname{Real}\left(e^{j\omega t}\right).$$
(3)

where $\omega > 0$ is a real constant.

(a) A particular solution $y_p(t)$ for this input can be written as

$$y_p(t) = Y(\omega) \cos\left(\omega t + \phi(\omega)\right) . \tag{4}$$

Determine expressions for $Y(\omega)$ and $\phi(\omega)$ in terms of a, b and ω .

(b) Fig. 1 shows the response of the ODE in Eq. (1) when the input u(t) is given by Eq. (3) and y(0) = 0. A steady state response is achieved for $t \ge 1$.

Determine the values of the parameters ω , a and b.

Figure 1: Response y(t) for a cosine input function.

3 Problem

The ODE which describes the angular rotation of a D.C. motor is

$$\ddot{\theta}(t) + \alpha \,\dot{\theta}(t) = E \,u(t) + G \,d(t) \tag{1}$$

where

- $\theta(t)$ is dc-motor's angular rotation and $\dot{\theta}(t)$ and $\ddot{\theta}(t)$ are its angular velocity and acceleration respectively
- u(t) is the control input and d is the disturbance input
- E = 1, G = 1 and $\alpha = 0.1$ are constants of appropriate dimensions.

The control objective is that the dc-motor output $\theta(t)$ converges to a **constant** steady state value $\bar{\theta}_{des}$.

1) Assume that $\theta(0) \neq \bar{\theta}_{des}$.

Is it possible to achieve the control objective with a constant **open loop** control input \bar{u}_{op} , even if $d(t) = \bar{d}$ is constant and is perfectly known? Explain why or why not.

2) Assume that the closed loop control is

$$u(t) = K_P \left[\theta_{des} - \theta(t)\right] - K_D \dot{\theta}(t)$$
(2)

where K_P and K_D are control gains.

The control system block diagram is shown in Fig. 2.

Figure 2: DC motor control systems

(continues on the next page)

- (a) Derive the second order ODE which describes the closed loop system. Notice that the system has two inputs: θ_{des} and d(t) and one output: $\theta(t)$.
- (b) Determine the conditions that the control gains K_P and K_D must satisfy so that the homogeneous solution of the close loop system is asymptotically stable.
- (c) Assume that the desired angular velocity is a constant, and the disturbance is zero, i.e.

$$d(t) = 0 \qquad \qquad \theta_{des}(t) = \bar{\theta}_{des}$$

and that K_P and K_D are selected so that the homogeneous solution of the close loop system is asymptotically stable. Determine the steady state angular rotation $\bar{\theta}$.

- (d) Calculate the required control gains K_p and K_d so that the homogeneous solution of the closed loop system will have a damping ratio $\xi = 0.707$ and a natural frequency $\omega_n = 10$ rad/sec.
- (e) Draw a sketch of the close loop system response under the conditions outlined in items (c) and (d), and under the initial conditions

$$\theta(0) = \theta(0) = 0 \,.$$