<u>Chem 4A, Fall 2006</u> Midterm Exam 2, October 20, 2006. Prof. Head-Gordon, Prof. Moretto

Name: GRADING KEY TA:

Grade:

- 1. (8 points) _____
- 2. (5 points)
- 3. (6 points) _____
- 4. (6 points) _____

Total: 25

Closed book exam. There are 6 pages. Calculators are OK. Set brains to wavelength for stimulated emission of knowledge and go! Use back side of pages for scribble paper

Some possibly useful facts and figures:

$$R = 8.3145 \text{ J mol}^{-1} \text{ K}^{-1}$$
 molar volume at STP = 22.4 L
 $h = 6.6261 \times 10^{-34} \text{ J s}$ $h = h/2\pi$

$$c = 2.9979 \times 10^8 \text{ m s}^{-1}$$
 $k_B = 1.38066 \times 10^{-23} \text{ J K}^{-1}$

$$m_e = 9.1094 \times 10^{-31} \text{ kg}$$
 1 atm = 101325 Pa

$$m_e = 9.1094 \times 10^{-10}$$
 kg 1 atm = 10
 $N_0 = 6.0221 \times 10^{23}$ mol⁻¹

Some possibly relevant equations:

Planck relation:
$$E = hv$$

kinetic energy
$$T = \frac{1}{2}mv^2$$

diatomic rotational energies
$$E_J = \frac{h^2}{8\pi^2 I} J(J+1)$$
 degeneracy $g_J = 2J+1$

moment of inertia
$$I = \mu r^2$$

reduced mass of a diatomic
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

harmonic oscillator frequency
$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$

- 1. (8 points) Molecular orbitals for the electrons in thioformaldehyde, H₂C=S.
 - (a) (2 points) Predict the geometry of the molecule using the VSEPR method. What kind of hybrid orbitals will you use on the C (Z=6) and S (Z=16) atoms to most conveniently predict the molecular orbitals?

(b) (2 points) Sketch the shape (boundary surface) of the 4 molecular orbitals (σ and σ *) that describe interactions between C and the 2 H atoms. Also draw an energy level diagram showing the AO and MO energies, and which MO's are occupied.

(c) (2 points) Sketch the shape (boundary surface) of the 4 (σ and σ *) molecular orbitals that describe σ interactions between C and S (don't forget lone pairs!). Also draw an energy level diagram showing the AO and MO energies, and which MO's are occupied.

(d) (2 points) Sketch the shape (boundary surface) of the π and π^* molecular orbitals that describe π interactions between C and S. Also draw an energy level diagram showing the AO and MO energies, and which MO's are occupied.

- 2. (5 points) It is found that the rotational transition from J=0 to J=1 of the NaH molecule occurs at a frequency of 2.94×10^{11} Hz.
 - (a) (1 point) Predict the frequency of the J=2 to J=3 transition for the NaH molecule.

$$V_{2\to3} = [12-6]B = 6B$$
 $\Rightarrow V_{2\to3} = 3V_{0\to1}$ $= 8-82\times10^{11} \text{ Hz}$

(b) (2 points) From the observed frequency, what is the moment of inertia, *I*, for the NaH molecule? Be sure to include its units.

$$V_{0\to 1} = \frac{2h}{8\pi^{2}I}$$

$$\Rightarrow I = \frac{2h}{8\pi^{2}} V_{0\to 1} = 5.71 \times 10^{-4J} \left[J_{s^{2}} \right] 1$$

$$(J_{s^{2}} = kg \, m^{2} \, s^{2} \, s^{2} = kg \, m^{2})$$

(c) (1 point) Given that the reduced mass of NaH is 1.603×10⁻²⁷ kg, what is the bond length of the NaH molecule?

$$I = \mu R^{2}$$

$$\Rightarrow R = \sqrt{\frac{I}{\mu}} = 1.887 \times 10^{-10} \text{ m}$$

$$(1.887 \text{ A})$$

(d) (1 point) Explain why you would expect the rotational spectrum of H_2 to be either more intense or less intense than the rotational spectrum of NaH.

- 3. (6 points) Suppose absorption of IR radiation of wavelength 3×10^{-6} m excites the vibration of an OH group, such as in alcohols or water, with reduced mass 1.574×10^{-27} kg.
 - (a) (2 points) What is the force constant for this vibration? Give its units.

$$y = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}} \implies 4\pi^2 v^2 \mu = k$$

$$v = c/\lambda \implies k = \frac{4\pi^2 \mu c^2}{\lambda^2}$$

$$\Rightarrow k = 620.5 \quad N \text{ m}^{-1} \quad (\text{or kg s}^{-2}) \qquad (0.5)$$

(b) (2 points) Estimate the ratio of the vibrational frequency of the OD stretch relative to the OH stretch, explaining your logic fully. The atomic masses of O, H and D are 15.9949 amu, 1.0078 amu and 2.0141 amu respectively,

$$\frac{\nu_{oD}}{\nu_{oH}} = \sqrt{\frac{\mu_{oH}}{\mu_{oD}}} \approx \sqrt{\frac{m_{H}}{m_{D}}} \approx \frac{1}{\sqrt{2}}$$

i.e. The OD stretch will be about 7070 of the frequency of the OH stretch...

(c) (2 points) If the OH bond participates in a hydrogen bond with the lone pair of another oxygen atom (ie. OH····O), draw a donor-acceptor type orbital interaction diagram and suggest how the OH vibrational frequency will be affected.

donor orbital mixes with a small amount of 5th, which will slightly lower the bond order of the OH bond, and thus reduce its frequency 5

- 4. (6 points) Aluminum metal (m=26.9815 amu) reacts with excess aqueous hydrochloric acid (HCl) to produce hydrogen gas and water-soluble aluminum chloride (AlCl₃).
 - (a) (1 point) Write a balanced chemical equation for this reaction.

(b) (2 points) What mass of aluminum is necessary to produce 5 L of hydrogen gas at a pressure of 1 atm and a temperature of 30.0°C?

$$n_{H_{2}} = \frac{PV}{RT} = 0.201 \text{ mol}$$

$$n_{AL} = \frac{2}{3} n_{H_{2}} = 0.134 \text{ mol}$$

$$= m_{AL} = n_{AL} M_{AL} = 3.62 \text{ g}$$

(c) (1 point) Suppose the 5L of gas was forced into a 1L container, which was cooled to 0°C. What would be the pressure inside the container be (in atm)?

$$PV = nRT$$

$$\Rightarrow \frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$$

$$\Rightarrow \frac{P_{1}V_{1}}{T_{2}} = \frac{P_{2}V_{2}}{T_{2}} = \frac{1}{1} \times \left(\frac{5}{1}\right) \times \left(\frac{273}{303}\right) = 4.5 \text{ atm}$$

(d) (2 points) Given that the average energy per molecule in the kinetic theory is $3k_BT/2$, obtain an expression for the root mean square speed, and use this to find the root mean square speed of the molecules inside the 0°C container.

$$\overline{E} = \frac{3k_BT}{2} = \frac{1}{2}m\nabla^2$$

$$\Rightarrow \nabla = \sqrt{\frac{3k_BT}{m}} \qquad m_{H_2} = \frac{2 \times 1.008 \times 10^{-3}}{6.0221 \times 10^{23}} \text{ kg}$$

$$\overline{\nabla} = 1840 \text{ m s}^{-1}$$

$$= 3.348 \times 10^{-27} \text{ kg}$$