Version A

Name: \qquad
SID: \qquad
TA: \qquad

Section:

\qquad
Please read this first: Write your name and that of your TA on all 16 pages; On the Scantron ${ }^{\text {TM }}$, bubble in Form A.

Test-taking Strategy

This test consists of two parts: multiple choice (answers to be circled and entered on the Scantron ${ }^{\text {TM }}$ sheet) and short answer. In order to maximize your score on the exam:

- Do the questions you know how to do first.
- Then, go back and spend more time on the questions you find more challenging.
- Budget your time carefully -- don't spend too much time on one problem.
- Show all work for which you want credit and don't forget to include units.

Page	Score
MC	
11	
12	
13	
14	
15	Total

\qquad

Potentially Useful Information

$$
\begin{aligned}
& \mathrm{E}=\mathrm{h} \nu \\
& \lambda v=\mathrm{c} \\
& \lambda_{\text {deBroglie }}=\mathrm{h} / \mathrm{p}=\mathrm{h} / \mathrm{mv} \\
& \mathrm{E}_{\text {kin }}(\mathrm{e}-)=\mathrm{h} \nu-\Phi=\mathrm{h} v-\mathrm{h} v_{0} \\
& E_{n}=-\frac{Z^{2}}{n^{2}} R_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{~S}^{\circ} \\
& \Delta \mathrm{H}^{\circ}=\sum \Delta \mathrm{H}_{\mathrm{f}}^{\circ} \text { (products) }-\sum \Delta \mathrm{H}_{\mathrm{f}}^{\circ} \text { (reactants) } \\
& \Delta \mathrm{S}^{\circ}=\sum \mathrm{S}^{\circ} \text { (products) }-\sum \mathrm{S}^{\circ} \text { (reactants) } \\
& \Delta \mathrm{G}^{\circ}=\sum \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (products) }-\Sigma \Delta \mathrm{G}_{\mathrm{f}}^{\circ} \text { (reactants) } \\
& \mathrm{S}=\mathrm{k}_{\mathrm{B}} \ln \mathrm{~W}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{PV} & =\mathrm{nRT} \\
E_{k i n} & =\frac{3}{2} R T \\
\mathrm{v}_{\mathrm{rms}} & =\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}
\end{aligned}
$$

$$
\text { for } \mathrm{aA}+\mathrm{bB} \rightleftarrows \mathrm{cC}+\mathrm{dD}
$$

$$
Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad \text { At equilibrium, } \mathrm{Q}=\mathrm{K}
$$

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{R} T \ln \mathrm{~K}
$$

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}
$$

$$
\ln K=-\frac{\Delta H^{\circ}}{R} \frac{1}{T}+\frac{\Delta S^{\circ}}{R}
$$

$$
\mathrm{w}=-\mathrm{P}_{\mathrm{ex} t} \Delta \mathrm{~V}
$$

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{nF} \Delta \epsilon^{\circ}
$$

$$
\Delta E=\frac{3}{2} n R \Delta T
$$

$$
\mathrm{pX}=-\log \mathrm{X}
$$

$$
p H=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]}
$$

$\mathrm{R}=0.08206(\mathrm{~atm} \cdot \mathrm{~L}) /(\mathrm{mol} \cdot \mathrm{K})$
$=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
$\mathrm{k}_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\mathrm{c}=3.0 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
$\mathrm{R}_{\infty}=2.18 \times 10^{-18} \mathrm{~J}$
$\mathrm{F}=96,485 \mathrm{C} / \mathrm{mol}$
$1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
$1 \mathrm{~kJ}=1000 \mathrm{~J}$

Color and Wavelength of Light

Bond	Enthalpy (kJ / mol)
$\mathrm{C}-\mathrm{C}$	348
$\mathrm{C}=\mathrm{C}$	612
$\mathrm{C} \equiv \mathrm{C}$	838
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{H}-\mathrm{H}$	436

\qquad
Page 3 of 16
Part I Multiple Choice (5 pts each, $\mathbf{2 2 5}$ pts total) Bubble in the correct answer on your Scantron ${ }^{\text {TM }}$ form AND circle your answer on the exam. There is only one correct answer for each question, so you should circle and fill in one and only one answer for each question. There is no penalty for an incorrect response.

1) Consider the formation of hydrogen peroxide from the elements in their standard states:
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$

How does the oxidation number of oxygen change in the above reaction?
A) $-2 \rightarrow-2$
B) $-1 \rightarrow 0$
C) $0 \rightarrow 0$
D) $0 \rightarrow-1$
E) $0 \rightarrow-2$
2) Which of the following samples of gas has the highest root mean square speed?
A) H_{2} at 200 K
B) He at 200 K
C) Ar at 200 K
D) Ar at 400 K
E) CO_{2} at 500 K
3) Which of the following reactions exhibits the greatest change in entropy?
A) $\mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
D) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
E) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
4) The empirical formula of a hydrocarbon gas is CH_{2}. If 2.10 g of gas occupies 1.12 L at 1.00 atm and 273 K , what is the molecular formula of the hydrocarbon gas?
A) CH
B) CH_{2}
C) $\mathrm{C}_{2} \mathrm{H}_{4}$
D) $\mathrm{C}_{3} \mathrm{H}_{6}$
E) $\mathrm{C}_{4} \mathrm{H}_{8}$
\qquad
5) Which of the following structural isomers of chlorobromopropane $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{BrCl}\right)$ is chiral (note the H atoms are omitted for clarity)?
A)

B)

D)

E) none of these
6) Which of the following is the mass spectrum of the combustion products of trimethylbenzene $\left(\mathrm{C}_{9} \mathrm{H}_{12}\right)$?
A)

B)

C)

D)

E)

7) What is the hybridization of the carbon atoms in ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$?
A) sp
B) sp^{2}
C) sp^{3}
D) $s^{2} p$
E) $s^{2} p^{4}$
8) Use the table of average bond enthalpies to estimate $\Delta \mathrm{H}^{\circ}$ (in $\mathrm{kJ} / \mathrm{mol}$) for the following reaction:
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
A) -290
B) -126
C) 0
D) 126
E) 290
9) Which of the following molecules has a nonzero dipole moment?
A) $\mathrm{CH}_{3}{ }^{+}$
B) BF_{3}
C) AlBr_{3}
D) PCl_{3}
E) CO_{2}
\qquad
\qquad
10) A gas expands isothermally against a vacuum $\left(\mathrm{P}_{\mathrm{ext}}=0\right)$, which of the following is NOT true?
A) $q=0$
B) $w=0$
C) $\Delta E=0$
D) $\Delta \mathrm{H}=0$
E) $\Delta S=0$
11) Which of the following is always conserved during a chemical reaction?
A) entropy
B) molecules
C) moles
D) mass
E) none of these
12) A flask is filled with 16.0 g of methane $\left(\mathrm{CH}_{4}\right)$ and 16.0 g of oxygen which combust to form carbon dioxide and water. Which is the limiting reagent?
A) CH_{4}
B) O_{2}
C) CO_{2}
D) $\mathrm{H}_{2} \mathrm{O}$
E) none of these
13) To which energy level diagram does the following emission spectrum correspond?

A)
B)
\square
$=$

\qquad E) $=$
\qquad
14) Light of 121 nm wavelength is emitted in the $\mathrm{n}=2 \rightarrow 1$ transition in H . What transition in He^{+}will emit the same wavelength of light?
A) $2 \rightarrow 1$
B) $2 \rightarrow 2$
C) $4 \rightarrow 1$
D) $4 \rightarrow 2$
E) $4 \rightarrow 3$
\qquad
Page 6 of 16
15) Which of the following has the lowest ionization energy?
A) H (1s)
B) $\mathrm{He}(1 \mathrm{~s} 4 \mathrm{p})$
C) $\mathrm{He}(1 \mathrm{~s} 3 \mathrm{~d})$
D) $\mathrm{Li}\left(1 \mathrm{~s}^{2} 3 p\right)$
E) $\mathrm{Li}\left(1 \mathrm{~s}^{2} 5 \mathrm{~s}\right)$
16) Which atom or ion can have the electronic configuration $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5} 3 \mathrm{~s}^{1}$?
A) F^{+}
B) F
C) Na^{+}
D) Na
E) Mg^{+}
17) Which of the following is required in the least amount to dissolve 10 mg of aluminum hydroxide $\left\{\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{Ksp}=1.9 \times 10^{-33}\right\}$?
A) 8 M NaOH
B) 1 M NaOH
C) 5 M acetic acid
D) 1 M acetic acid
E) $\mathrm{H}_{2} \mathrm{O}$
18) Which of the following molecules has a molecular geometry most similar to $\mathrm{SF}_{4}{ }^{2-}$?
A) CCl_{4}
B) $\mathrm{NH}_{4}{ }^{+}$
C) BF_{4}^{-}
D) SI_{4}
E) XeF_{4}
19) The K_{a} for chloroacetic acid $\left(\mathrm{CH}_{2} \mathrm{ClCOOH}\right)$ is 5.65×10^{-3}. If the equilibrium concentrations of $\left[\mathrm{CH}_{2} \mathrm{ClCOOH}\right]=8.88 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{CH}_{2} \mathrm{ClCOO}^{-}\right]=2.24 \times 10^{-2} \mathrm{M}$, what is the corresponding $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$(in M)?

$$
\mathrm{CH}_{2} \mathrm{ClCOOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{CH}_{2} \mathrm{ClCOO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

A) 5.65×10^{-3}
B) 8.88×10^{-2}
C) 2.24×10^{-2}
D) 5.01×10^{-4}
E) 6.36×10^{-2}
\qquad TA: \qquad
Page 7 of 16
20) Formic acid is a weak acid with $\mathrm{pK}_{\mathrm{a}}=3.75$. How many mL of 0.10 M NaOH solution should be added to 100.0 mL of 0.10 M formic acid solution to make a buffer solution with $\mathrm{pH}=3.27$?
A) 0.0
B) 25.0
C) 50.0
D) 75.0
E) 100.0
21) The ionization energy of a certain one-electron species in its ground state is $3.28 \times 10^{4} \mathrm{~kJ} / \mathrm{mol}$. How many protons are contained in its nucleus?
A) 1
B) 2
C) 3
D) 4
E) 5
22) Consider the conversion of ozone to oxygen:

$$
2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2} \quad \Delta \mathrm{H}^{\circ}=-286 \mathrm{~kJ} / \mathrm{mol}
$$

Which of the following is true about the bond enthalpies (E)?
A) $\mathrm{E}_{\mathrm{O}=\mathrm{O}}>2 \mathrm{E}_{\mathrm{O}-\mathrm{O}}$
B) $\mathrm{E}_{\mathrm{O}=\mathrm{O}}=2 \mathrm{E}_{\mathrm{O}-\mathrm{O}}$
C) $\mathrm{E}_{\mathrm{O}=\mathrm{O}}<2 \mathrm{E}_{\mathrm{O}-\mathrm{O}}$
D) $\mathrm{E}_{\mathrm{O}=\mathrm{O}}<\mathrm{E}_{\mathrm{O}-\mathrm{O}}$
E) $\mathrm{E}_{\mathrm{O}=\mathrm{O}}=\mathrm{E}_{\mathrm{O}-\mathrm{O}}$
23) Which of the following atoms or ions has the smallest radius?
A) Mg
B) Na^{+}
C) Ne
D) F^{-}
E) O^{2-}
24) When a system has reached equilibrium, which of the following is true for the rates of the forward and reverse reactions?
A) Forward $=0$
B) Reverse $=0$
C) Forward $<$ Reverse
D) Forward = Reverse
E) Forward > Reverse
25) Why is the ionization energy for Na^{+}larger than the ionization energy for Ne ?
A) Neon is a noble gas.
B) Neon has a smaller radius that Na^{+}.
C) Neon has fewer protons.
D) The outer electrons in sodium are in a higher energy level.
E) Sodium is more metallic.
26) Consider the following reaction at equilibrium:

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+92.4 \mathrm{~kJ}
$$

Removing some $\mathrm{N}_{2}(\mathrm{~g})$ from the system at equilibrium will \qquad .
A) increase the partial pressure of $\mathrm{NH}_{3}(\mathrm{~g})$ at equilibrium
B) decrease the partial pressure of $\mathrm{H}_{2}(\mathrm{~g})$ at equilibrium
C) increase the value of the equilibrium constant
D) cause the reaction to shift to the right
E) increase the reaction temperature
27) Of the following, $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ is not zero for \qquad .
A) O_{2} (liquid)
B) C(graphite)
C) N_{2} (gas)
D) F_{2} (gas)
E) Cl_{2} (gas)
28) What is the pH of a 0.10 M HCl solution?
A) 0.00
B) 1.00
C) 1.89
D) 3.75
E) 10.00
29) What is the change in the internal energy, $\Delta \mathrm{E}$ (in J) of a system that absorbs 4000 J of heat and that does 2000 J of work on the surroundings?
A) 6000
B) 4000
C) 2000
D) -2000
E) -4000

Name:
TA: \qquad
Page 9 of 16
30) At lower temperatures
A) Chemical reactions are more favorable.
B) Chemical reactions are less favorable.
C) Equilibrium constants are smaller.
D) Equilibrium constants are larger.
E) Chemical reactions are sometimes more favorable.
31) We have seen many times in lecture that heat is given off in the combustion of hydrogen gas. Which of the following is responsible for the heat?
A) Breaking H-H and $\mathrm{O}-\mathrm{O}$ bonds.
B) Breaking $\mathrm{O}-\mathrm{H}$ bonds.
C) Forming $\mathrm{H}-\mathrm{H}$ bonds and $\mathrm{O}-\mathrm{O}$ bonds.
D) Forming O-H bonds.
E) Vaporization of the water formed.
32) For the reaction :

$$
\mathrm{A}(\mathrm{l})+\mathrm{D}(\mathrm{~g}) \rightarrow \mathrm{X}(\mathrm{~g})+\mathrm{Z}(\mathrm{~s})
$$

having $\Delta \mathrm{G}^{\circ}=-500 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$, the equilibrium mixture \qquad .
A) will consist almost exclusively of A and D.
B) will consist almost exclusively of X and Z .
C) will consist almost exclusively of A and Z.
D) will consist of significant amounts of $\mathrm{A}, \mathrm{D}, \mathrm{X}$, and Z .
E) has a composition predictable only if one knows T and $\Delta \mathrm{H}^{\circ}$.
33) A beam of yellow light does not eject electrons from a certain metal. What change to the beam should be made in an attempt to eject electrons?
A) Increase the wavelength.
B) Increase the intensity.
C) Increase the frequency.
D) Change the color to red.
E) None of the above will work
\qquad TA: \qquad
Page 10 of 16
34) A 0.10 mole sample of $\mathrm{He}(\mathrm{g})$ is added to a 1.00 L flask containing Ar gas at 1.00 atm at 273 K . What is the partial pressure of He ?
A) 0.10 atm
B) 1.24 atm
C) 1.00 atm
D) 2.24 atm
E) 3.24 atm
35) A 0.10 mole sample of $\mathrm{He}(\mathrm{g})$ is added to a 1.00 L flask containing Ar gas at 1.00 atm at 273 K . What is the total pressure in the flask?
A) 0.10 atm
B) 1.24 atm
C) 1.00 atm
D) 2.24 atm
E) 3.24 atm

Use the following table to answer questions 36-38.

Reaction	Standard Reduction Potential (Volts)
$\mathrm{Ag}^{+1}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Cu}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Ni}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.23
$\mathrm{Fe}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.41
$\mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76

36) What will be produced when an iron rod is placed in a solution of AgNO_{3} solution?
A) $\mathrm{H}_{2}(\mathrm{~g})$
B) $\operatorname{Ag}(\mathrm{s})$
C) Fe^{+2}
D) $\mathrm{AgNO}_{3}(\mathrm{~s})$
E) B and C
37) What is the potential (in volts) for the cell described below?

$$
\mathrm{Cu}\left|\mathrm{CuSO}_{4}(1.0 \mathrm{M}) \| \mathrm{AgNO}_{3}(1.0 \mathrm{M})\right| \mathrm{Ag}
$$

A) 0.16
B) 0.34
C) 0.46
D) 0.80
E) 1.14
38) What is the $\Delta \mathrm{G}^{\circ}$ (in kJ) for the cell described below?

$$
\mathrm{Zn}\left|\mathrm{ZnSO}_{4}(1.0 \mathrm{M}) \| \mathrm{H}_{2} \mathrm{SO}_{4}(1.0 \mathrm{M})\right| \mathrm{H}_{2} \mid \mathrm{Pt}
$$

A) -147
B) -78
C) 0
D) 78
E) 147

Name: \qquad TA: \qquad
Page 11 of 16
For Questions 39-45, which sketch best depicts the dependence of Y vs X for the following:
A)

B)

C)

D)

E) Y

39) P vs V for an ideal gas.
A) A
B) B
C) C
D) D
E) E
40) $\Delta \mathrm{G}^{\circ}$ vs T for the reaction $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}$.
A) A
B) B
C) C
D) D
E) E
41) $\ln \mathrm{K}$ vs $1 / \mathrm{T}$ for dissolution of borax $\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (the reaction is endothermic).
A) A
B) B
C) C
D) D
E) E
42) Kinetic Energy vs T for 1 mole of an ideal gas.
A) A
B) B
C) C
D) D
E) E
43) Absorbance vs. concentration for a dilute solution of sunscreen.
A) A
B) B
C) C
D) D
E) E
44) $\Delta \epsilon^{o}$ vs number of moles of magnesium for the reduction of magnesium metal.
A) A
B) B
C) C
D) D
E) E
45) Photon energy versus wavelength of light.
A) A
B) B
C) C
D) D
E) E

Name: \qquad
Page 12 of 16
Part 2: Short Answer Problems (125 pts total)
Instructions: Enter answers in the boxes where provided. Show all work for which you wish to receive credit. Where explanations are required, only the first fifteen words will be considered for your grade.
1.) (85 pts) Nitrous acid $\left(\mathrm{HNO}_{2}\right)$ has a $\mathrm{pK} \mathrm{K}_{\mathrm{a}}=3.34$.

$$
\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

a) (15 pts) Calculate $\Delta \mathrm{G}^{\circ}$ (in $\mathrm{kJ} / \mathrm{mol}$) for the reaction of nitrous acid with water at $25^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}} \\
& 10^{-3.34}=\mathrm{K}_{\mathrm{a}} \\
& \mathrm{~K}_{\mathrm{a}}=4.57 \times 10^{-4} \\
& \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K} \\
& =-8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \bullet \mathrm{~K}} \bullet 298 \mathrm{~K} \ln \left(4.57 \times 10^{-4}\right) \\
& =19.1 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$\Delta \mathrm{G}^{\circ}$:

$19.1 \mathrm{~kJ} / \mathrm{mol}$
b) (10 pts) Classify HNO_{2} as an acid or base by circling an option below. Provide an explanation.

Explanation:
Proton donor, $\Delta \mathrm{G}^{\circ}>0$, equilibrium lies to the left
\qquad
\qquad
c) (10 pts) Which of the following pH ranges corresponds to the region where a solution containing HNO_{2} is an effective buffer. Circle your answer and provide an explanation.
$4.34-2.34$
$5.34-1.34$
$5.34-7.34$

Explanation:
Buffer region is around $\mathrm{pK}_{\mathrm{a}} \pm 1 \mathrm{pH}$ unit
d) (25 pts) A solution $100 \mathrm{~mL} 0.1 \mathrm{M} \mathrm{HNO}_{2}$ is titrated to the equivalence point with 0.1 M NaOH .
i) What is the total volume of the solution(in mL)?
$0.1 \mathrm{~L}\left(0.1 \mathrm{M} \mathrm{HNO}_{2}\right)=0.01$ moles HNO_{2}
0.1 moles $\mathrm{NaOH}=0.1 \mathrm{M} \mathrm{NaOH} \mathrm{X} \mathrm{L}$
$\mathrm{X}=0.1 \mathrm{~L}$
$\mathrm{V}_{\text {tot }}=0.2 \mathrm{~L}=200 \mathrm{~mL}$

V:

200 mL
ii) What is the pH of the solution?
at the equivalence point 0.01 moles NaNO_{2} have been formed $\left[\mathrm{NaNO}_{2}\right]=0.01$ moles $/ 0.2 \mathrm{~L}=0.05 \mathrm{M} \mathrm{Kb}=\mathrm{Kw} / \mathrm{Ka}=1 \times 10^{-14} / 4.57 \times 10^{-4}=2.18 \times 10^{-11}$

$$
\begin{aligned}
& \mathrm{NaNO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& K_{b}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\mathrm{NaNO}_{2}^{-}}=\frac{x^{2}}{0.05-x}=2.18 \times 10^{-11} \text { if } \mathrm{x} \ll 0.05 \mathrm{x}=1.04 \times 10^{-6}=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{pOH}=-\log \left(1.04 \times 10^{-6}\right)=5.98 \mathrm{pH}=14-\mathrm{pOH}=8.0
\end{aligned}
$$

iii) For the titration of HNO_{2}, the pH at the equivalence point is not 7. Explain.

Explanation:
HNO_{2} is a weak acid, the titration generates a conjugate base $\rightarrow \mathrm{pH}>7$
e) (25 pts) Draw a pair of valid resonance lewis dot structures for the $\mathrm{NO}_{2}{ }^{-}$ion.

i) Which of the following best describes the bond angle in $\mathrm{NO}_{2}{ }^{-}$. Circle your answer.

$$
=180^{\circ} \quad=120^{\circ} \quad>120^{\circ}
$$

the repulsion from the lone pair of electrons will create a bond angle less than the ideal 120
ii) What is the nitrogen/oxygen bond order $\mathrm{NO}_{2}{ }^{-}$?

Bond order $=\frac{\text { total } \# \text { of } N / O \text { bonds }}{\text { total } \# \text { of resonance structures }}$

> Bond order:
1.5
iii) Does $\mathrm{NO}_{2}{ }^{-}$have a dipole moment? Circle your answer.

No
unequal distribution of electrons about the central atom make $\mathrm{NO}_{2}{ }^{-}$polar
2.) (40 pts) Consider the dissociation of molecular chlorine $\left(\mathrm{Cl}_{2}\right)$ to atomic chlorine (Cl) :

$$
\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}
$$

a) (15 pts) The bond enthalpy of the $\mathrm{Cl}-\mathrm{Cl}$ bond is $242 \mathrm{~kJ} / \mathrm{mol}$. What is the maximum wavelength (λ, in nm) of light required to break the bond?

For 1 mole of bonds:
$\mathrm{E}=\mathrm{h} \nu\left(6.02 \times 10^{23}\right)=242 \mathrm{~kJ} / \mathrm{mol}$
For a single photon to break a single bond:

$$
E=\frac{242000 \frac{\mathrm{~J}}{\mathrm{~mol}}}{6.02 \times 10^{23} \frac{\text { bonds }}{\text { mole }}}=4.01 \times 10^{-19} \mathrm{~J}=\mathrm{h} v=h \frac{c}{\lambda}
$$

$$
\lambda=495 \mathrm{~nm}
$$

b) (10 pts) The minimum frequency of light required to ionize a Cl atom corresponds to the UV region in the electromagnetic spectrum. On the axes provided, sketch a plot of the kinetic energy of electrons ionized from a Cl atom as a function of light frequency.

c) (8 pts) Using \uparrow and \downarrow, fill in the corresponding electronic orbital diagrams for Cl_{2} and Cl .

d) (7 pts) What is the change in paramagnetism for the Cl_{2} dissociation reaction. Circle your answer.

Decreases
Stays the same

