Chemistry 1A Page 1 of 7.

Midterm Exam 1 (Closed Book, 60 minutes, 75 points)

September 17, 1996 Professor Pines

Version B

Name:	TA:
SID:	Section:

Identification Sticker

Whose picture is this (circle one), and what is his connection to Chemistry 1A?

Boyle

Avogadro

Bach

Neumark

Boltzmann

Test-taking strategy: PLEASE READ THIS FIRST!

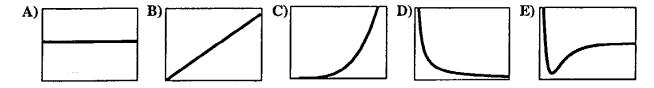
Write your name on all 7 pages. This test consists of two parts: multiple choice (answers to be circled and entered on the Scantron sheet) and short answer. In order to maximize your score on the exam:

- Do the questions you know how to do first.
- Then, go back and spend more time on the questions you find more challenging.
- Budget your time carefully -- don't spend too much time on one problem.
- Show all work for which you want credit and don't forget to include units.
- The tear-out back page has a periodic table as well as some data and useful equations.

Page	Points
2-3	
4	
5	
6	
Total:	

Page 2 of 7.	Name:
--------------	-------

Section 1: Multiple Choice. 12 questions, 3 points each.


Instructions: For the following questions, circle the answer on the exam sheet and bubble in the correct answer on your Scantron sheet. Unless you are specifically told that there might be more than one answer to a problem, assume that only one answer is correct. No credit will be awarded for partially-correct answers.

- 1.) You are taking test version B. Please fill in bubble "B" on your Scantron sheet.
- 2.) Which of the following must be the same before and after a chemical reaction? Mark all that apply.
 - A) The total number of molecules.
 - B) The total number of moles.
 - C) The total mass.
 - **D)** The total pressure.
 - E) The total number of atoms (including those in molecules).
- 3.) Which of the following contains the most *molecules*?
 - A) 5.0 g CN
- **B)** 5.0 g O₂
- C) 5.0 g BF_3
- **D)** 5.0 g LiH
- E) 5.0 g Ar
- 4.) 2.50 g of a gaseous hydrocarbon occupies 3.0 L at a temperature of 800 K and a pressure of 2.1 atm. What is the molecular formula of the hydrocarbon? Assume ideal gas behavior.
 - A) C_2H_2
- B) CH₄
- C) C₆H₆
- D) C_4H_{12}
- E) C₂H₆
- 5.) Two gases, neon and argon, are placed in two containers at the same temperature. Both gases occupy the same volume and are at the same pressure. Which of the following are true? Mark all that apply.
 - A) Both gases have the same molar mass.
 - B) The distribution of molecular speeds is broader for Ar.
 - C) The numbers of the moles of the two gases are the same.
 - D) The average atomic kinetic energies of the two gases are different.
 - E) None of the above.
- **6.)** Which of the following compounds exhibit covalent bonding? Mark all that apply.
 - A) Cl₂
- B) CO₂
- C) CH₄
- D) RbCl
- E) MgBr₂

Page 3 of 7.

Name:		

7-10. In the next four problems, choose which of the following five graphs best describes the behaviors listed below. Assume ideal gases for the first three problems (7-9).

- 7.) The universal gas constant R as a function of n.
- 8.) Compressibility (squeezability) as a function of P.
- 9.) Kinetic energy as a function of T.
- 10.) Vapor pressure as a function of T.
- 11.) At 300 K, argon atoms travel with a rms speed of 433 m/s. Which of the following gases has the same rms speed at twice the temperature?
 - A) H₂
- B) C₆H₈
- C) Ne
- D) Br₂
- E) N₂
- 12.) At what temperature is °C equal to °F (see equation on last page)?
 - **A)** -273
- B) -40
- **C**) 0
- **D)** 100
- E) 212
- 13.) When diving, for every 10 meters down from the surface (at 1 atm) the pressure increases by 1 atm. Which ascent (in meters) is *least* dangerous for a diver?
 - A) 20 --> 10
- **B**) 70 --> 50
- C) 110 --> 10
- D) 50 --> 40
- E) 40 -> 0

Page	4	of	7.
1 420	-	V.	

Name:	 		

Section 2: Short Answer. 9 questions.

- 1.) (6 points) In lecture, a balloon full of H_2 and O_2 was ignited to form water vapor. Suppose the reaction were carried out in a rigid, 3 L vessel that is not damaged by the explosion. Assume that H_2 , O_2 and H_2O are ideal gases and the temperature is constant.
 - a.) If the vessel initially contained 0.60 atm of H₂ and 0.40 atm of O₂, what would be the final pressure after the reaction? Show your work.

P:	

b.) If the vessel initially contained 0.70 atm of H₂ and 0.30 atm of O₂, what would be the final pressure after the reaction? Show your work.

P:	

- 2.) (5 points) In the airbag experiment, you simulated an automobile airbag using 6M acetic acid and baking soda to inflate a plastic bag. Consider the errors in the experiment where the following problems exist:
 - a.) 3% of the mass of baking soda used was due to moisture from the air.

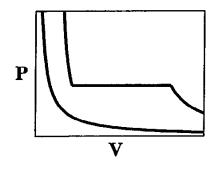
This is a systematic / random (circle one) error.

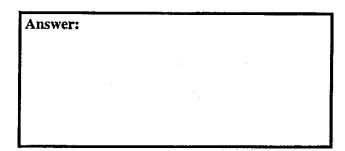
It would affect the accuracy / precision (circle one) of the results.

State in 15 words or less how your results would be affected.

b.) The pipettes used to measure the amounts of acetic acid to be used were poorly manufactured and measured within $\pm 5\%$ of the marked volume.

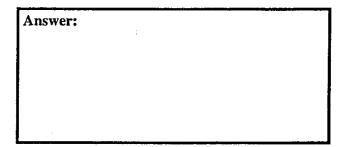
This is a systematic / random (circle one) error.

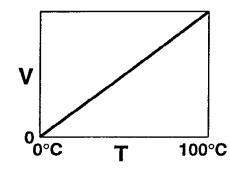

It would affect the accuracy / precision (circle one) of the results.


Page 5 of 7.

Name:			
maine:			

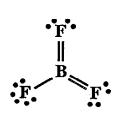
3-7. In no more than twenty words per response, state what is wrong with the following pictures. Note: only the first 20 words of each answer will be read!

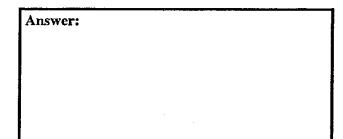

3.) (4 points) For a real gas:



4.) (4 points) For an ideal gas:

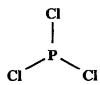
5.) (3 points) For an ideal gas:

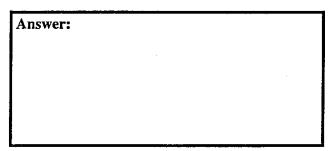

Answer:			


Page 6 of 7.

Name:	
Name:	

3-7 (cont.) In no more than twenty words per response, state what is wrong with the following pictures. Note: only the first 20 words of each answer will be read!


6.) (3 points):



7.) (4 points) The molecular structure of PCl₃ drawn as:

Trigonal Planar

8.) (4 points) Balance the following equation:

HAsBr4	+	H ₂ O	>	$_{}$ As ₂ O ₃	+	HB

9.) (6 points) At one time, it was thought that indium formed a chloride of the formula InCl₂. More recent work shows that the compound in question is actually In₃[In₂Cl₉]. Determine the percent mass of indium according to each formula and explain in 20 words or less how this error could be made.

T (0)	
InCl ₂	
~~ ~	
% in:	
/0 2110	
% In:	

In₃[In₂Cl₉] % In:

Answer:			

Page 7 of 7.

Name:	

Periodic Table of the Elements

	ľ		Me	etals													VIII
1.1 21.0079	11		Metalliods									RII	IV	V	VI	VII	He:
Li.	Be		Nonmetals									B	Ċ.	Ñ	Ö:		Ne
6.941 11 Na	9.01218 12 Mg		Transition Elements									13 Al	12 011 3 14 Si	15 SQ	15 9994 S	78 9984 217 CI	20.179 Ar.
22.9898	24.305											26.9815	28.08557	30.9738	₹32.06 🕏	35 453	
19	,20	21	22	23	24	25	26	27	28	29	_30 .	31	832	1	#34 E	#35	38
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge		Se.	Br	
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332 45	58.69 46	63,546 47	65.39 48	59.72 49	9239 50	74.9216#	至78.69豪	79.904	\$3.80 3
37	38	39 Y	40	41 NIL	42 B#0	- 43 To	44 D.:	Rh	₽ď	I _	Cd	l - 1	Sn	Sb	Τ̈́e	100	Xe
Rb.	Sr 87.52	8 8.9059	Zr 91.224	Nb 92,9064	Mo 95.94	TC (98)	Ru 101.07	102,906	106.42	Ag	112.41	1114.82	118.71	12 (75)		126.905	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	6884 W	285	© 86 m
Cs	Ba	La	Hf	Ta	W	Re	Os	lr l	Pt	Au	Hg	T!	Pb	Bi	Po!	E.Y. E.	Rn
132.905	137.33	138.908	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	284,385	207.2		2083374		222.0176.
87	88	89	104 a	105 a	106 a	107 a	108 a	109 a									
Fr	Ra	Ac 4	Una	Unp	Unh	Uns	Uno	Une									
223.0197	226.025	227.0278		262.1138		262.1229	–										
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
★ Lanthanide		Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
	series			140.12	140.908	144.24	146.9151	150.34	151.96	157.25	158.925	162.50	164.930	167.26	158.934	173.04	174.967
					01	00	02	94	95	96	97	98	99	100	101	102	103
	▲ Actinide			90 Th	91 Do	92	93 NI	Pu	-	_	Bk	Čf	Ës	Fm	Md	No	Lr
series			Th 232,038	Pa 231.036	238.029	Np 237,048		Am 243 0614	247.0703	247.0703		252.0829	257.0951	258.0986		260.1053	
232.038 231.036 238.029 237.048 244.0642 243.0614 247.0703 247.0703 251.0796 252.0829 257.0951 258.0988 259.1009 260.1063																	

Note: Atomic masses shown here are the 1983 IUPAC values (maximum of six significant figures). 8 Symbols based on IUPAC systematic names.

Possibly Useful Information:

Absolute T(K) = T(°C) + 273.15

$$T(^{\circ}F) = 1.8 \times T(^{\circ}C) + 32$$

 $V_{m} = 22.414 \text{ L·mol}^{-1}$
 V_{m