

Chemistry 1A Fall 1999

Midterm Exam II, version A October 12, 1999

(Closed book, 90 minutes, 145 points)

Name:	Section Number:
SID:	T.A. Name:

Identification Sticker

Exam information, exam directions, and useful hints to maximize your score:

- ▶ Write your name on all 5 pages.
- ► There are two parts to this exam: 1) multiple choice and 2) short answer problems.
- ► For the multiple choice problems, fill in the ScantronTM form AND circle the answer on your exam.
- Answer the questions you know how to do first, then work on the questions you skipped.
- ► Show all work for which you want credit and do not forget to include units!
- ▶ You may use the back side of the exam pages to show your work and/or for scratch paper.

Potentially useful information:

	micro, μ (x 10^{-6}) mega, M (x 10^{6})	
PV = nRT	, <u> </u>	$=\sqrt{\frac{3 k_B T}{m}}$
$E_{k} = \frac{3RT}{2}$	$v_{ms} = \sqrt{\frac{M}{m}} =$	√ m n
z		486 <u>nm</u> 3
0	у	121.5 nm
x		1

Unit Prefixes

$E_{n} = -R_{\infty} \frac{Z^{2}}{n^{2}}$	$\Delta E = -R_{\infty} Z^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$
$A = \log \left(\frac{I_o}{I_t} \right) =$	$-\log\left(\frac{I_t}{I_o}\right) = \varepsilon \cdot 1 \cdot C$
$\lambda = \frac{h}{p} = \frac{h}{mv}$	$E = h\nu = \frac{hc}{\lambda}$

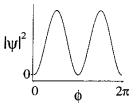
(Do not write in this box, it's for official use only)

Problems	Points
multiple choice	/ 40
Part 2, # 1	/ 25
Part 2, # 2	/ 30
Part 2, # 3	/ 25
Part 2, # 4	/ 25
all	/ 145

Η

Page 2 of 5

Name:_


Part 1: Multiple Choice. (5 pts each, 40 pts total)

Instructions: Bubble in the correct answer on your Scantron TM form AND circle the answer on your exam. Each question has one correct answer.

1.) The answer to question 1 is A. Bubble in A on your ScantronTM form.

2.) To which orbital does the plot of $|\psi|^2$ vs ϕ correspond?

- A.) 1s
- B.) 2s
- C.) $2p_x$
- $D.) 2p_y$
- E.) 2p_z

3.) The ionization of which with UV light at 90 nm will produce electrons with the longest de Broglie wavelength?

- A.) H (1s)
- B.) H (2s)
- C.) H (4s)
- D.) $He^{+}(4s)$ E.) $He^{+}(8s)$

4.) Identify the atom or ion with the electronic configuration [Ne]3s3p⁶?

- A.) Ar⁺
- B.) K⁺
- C.) Ar
- D.) K
- E.) Cl

5.) Which has the largest atomic or ionic radius?

- $A.) Ar^+$
- B.) K⁺
- C.) Ar
- D.) K
- E.) Cl

Page 3 of 5

Name:_			

- **6.)** Which is the most electronegative?
 - A.) H
- B.) Na
- C.) K
- D.) Cl
- E.) Br

- 7.) Which is *not* paramagnetic in its ground state?
 - A.) O
- B.) O⁻
- C.) O²⁻
 - D.) O₂
- E.) O₂

- **8.)** After diving, which ascent poses the gravest danger to a diver holding his or her breath?
 - A.) 10m→0m
- B.) 20m→10m
- C.) $40m\rightarrow 20m$
- 1 atm water 10 m 2 atm

air

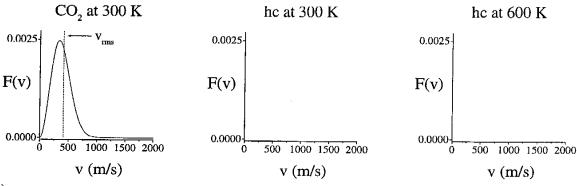
- D.) 60m→30m
- E.) 100m→40m

- 10 m
- 9.) The atoms or molecules of which ideal gas have the greatest average kinetic energy?
 - A.) Ar at 200 °C
- B.) He at 400 °C
- C.) He at 100 °C

- D.) H₂ at 200 °C
- E.) H₂ at 100 °C

Page -	4 of 5 Name:	
	2: Short Answer Problems (105 pts total) ctions: Enter answers in the boxes provided. Show your work and justify	y your answer.
(25 pt 1.)	s) Consider the H atom and He ⁺ ion.	
a)	What is the maximum wavelength of light that will ionize H(2s)?	
b)	Light of what wavelength will induce the $n=4 \rightarrow n=8$ transition in He ⁺ ?	Answer:
		Answer:
(30 pt 2.)	S) Consider an atom of the element aluminum (Al) in its ground state.	
a)	Write the electron configuration for an atom of Al.	
	Answe	r:
b)	Write down the values of the quantum numbers for an electron in the high	ghest occupied orbital.
	n:	I:
	\mathbf{m}_{1} :	m _s :
c)	Sketch the highest occupied atomic orbital and indicate number and type	e of nodes.
	Answer:	

Page 5 of 5


Name:_		
T 401110.		

(25 pts)

- 3.) Consider 4.4 g of a hydrocarbon (hc) gas with the empirical formula C_3H_8 .
- a) The hydrocarbon fills a balloon to 0.56 L at 4.4 atm and 300 K. What is the molecular formula of the hydrocarbon?

Answer:

b) Shown is a plot of the molecular speed distribution, F(v), and v_{rms} for CO_2 at 300 K. Sketch F(v) and indicate v_{rms} for the hydrocarbon gas at 300 K and 600 K.

(25 pts)

- 4.) Two sunscreen products (X and Y) have the following extinction coefficients, ε , at 310 nm: $X = 3.0 \text{ cm}^2/\text{g}$ and $Y = 1.0 \text{ cm}^2/\text{g}$. For the following questions, the absorbance should be calculated for a 1 cm sample path length.
- a) What is the absorbance of a 0.1 g/mL sample of X?

Answer:			

b) A 0.10 g/mL sample of either X or Y is placed in the spectrometer. The measured ratio of the intensity of the transmitted light to the intensity of the incident light is 0.80 at 310 nm. Is the sample sunscreen X or Y?

Answer:		