ME109 - Heat Transfer
 Midterm 1- Fall'04
 Instructor: Prof. A. Majumdar

Oct. 19, 2004; 5:10 pm - 6:30 pm; Maximum Points $=30$
NOTE: This is an open book, open notes exam.

1. Consider a very thin planar heater surrounded by materials on both sides, as shown in the figure on the right. The heater dissipates $100 \mathrm{~W} / \mathrm{m}^{2}$ and it is immersed in a fluid at $20^{\circ} \mathrm{C}$ that transfers heat with a coefficient of $50 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. Under steady state, determine the temperature of the heater, given the properties shown on the figure.
[10]
2. You have been asked to find the steady state
 radial temperature distribution, $T(r)$, in a long cylinder of radius, R. There is no heat generation and no circumferential heat flow, only radial heat flow. The cylinder is placed in a fluid of temperature, T_{f}, with a heat transfer coefficient of h. You decide to solve the problem numerically using a finite difference technique.
a. Identify the right mesh or grid structure to determine $T(r)$. [3]
b. Write down a nodal equation for an internal node which is not at the center. [4]
c. How will you deal with a node at the center. [3]
3. Consider a fin of conical shape extending from a wall, as shown in the figure below. The radius at the base is $R=1 \mathrm{~mm}$, and the fin length is $L=1 \mathrm{~cm}$. The thermal conductivity of the fin material is $k=10 \mathrm{~W} / \mathrm{m}-\mathrm{K}$. The wall or the base is fixed at $40^{\circ} \mathrm{C}$. Initially the fin is initially at $40^{\circ} \mathrm{C}$, and is suddenly immersed in a fluid with heat transfer coefficient, $h=20 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$ and temperature of $0^{\circ} \mathrm{C}$.
a. Consider the appropriate control volume and derive a governing equation for the temperature distribution and evolution of the fin. Solve the equation to determine the temperature distribution and history. [4]
b. What is the effectiveness of the fin under steady state? [3]
c. What is the efficiency of the fin under steady state? [3]

Note: The surface area of the slanting surface (i.e. without the base) of the cone is $\square R L$, where R is the base radius and L is the length.

