University of California, Berkeley
Coallege of Engineering
Computer Science Division [1 EECS

Spring 2001 John Kubiatowicz

Midterm |

SOLUTIONS
March 1, 2001
CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion Section:

Problem Possible Score
1 20
2 20
3 30
4 30
Total

[This page left for 1]

3.141592653589793238462643383279502884197169399375105820974944

Problem 1: Parformance
Problem la:

Name the three principle components of runtime that we discussed in class. How do they
combine to yield runtime?

Instruction count, Cycles per instruction (CPI), and clock period (or frequency)
Runtime = InstCount x CPI x clockperiod = InstCount x CPI = clock frequency

Now, you have analyzed a benchmark that runs on your company’s processor. This processor
runs at 300MHz and has the following characteristics:

Instruction Type Frequency (%) Cycles
Arithmetic and logical 35 1
Load and Store 25 2
Branches 25 3
Floating Point 15 5

Y our company is considering a cheaper, lower-performance version of the processor. Their plan
Isto remove some of the floating-point hardware to reduce the die size.

The wafer on which the chip is produced has a diameter of 10cm, a cost of $2000, and a defect
rateof 1/(cm®). The manufacturing process has an 80% wafer yield and avalue of 2 for a.
Here are some equations that you may find useful:

nx (wafer diameter/2)® 7 x wafer diameter

dies/wafer =
diearea J2xdiearea
. _ T
dieyield= wafer yieldx (1+ defects per unit areax d'eafeaj
o

The current procesor has adie size of 12mm x 12mm. The new chip has a die size of 10mm
x10mm, and floating point instructions will take 13 cycles to execute.

Problem 1b:
What isthe CPI and MIPS rating of the original processor?

CPI = (0.35x1) + (0.25x2) + (0.25x3) + (0.15x5) = 2.35
MIPS = 300MhZ+CPI = 300Mhz/2.35 = 127.66 MIPS

Problem 1c:
What is the CPI and MIPS rating of the new processor?

CPI = (0.35x1) + (0.25x2) + (0.25x3) + (0.15x13) = 3.55
MIPS= 300MhZ =3.55 = 84.51

Problem 1d:
What is the original cost per (working) processor?

n(lOsz
it -2
die/ wafer = 2) _ m100) =36 dievield = (0.80) 1+ V120 o7
12° \2.122 2
dieCost = waferCost 2000 _ 544
(die/ wafer)- (dieYield) 36-0.27
Problem 1e:
What is the new cost per (working) processor?
n(lOsz
it -2
die/ wafer = 2) _ m100) =56 dievield = (0.80) 1+ L1036
10° J2.102 2
dieCost — wafer Cost 2000 _ 9921

(die/ wafer)- (dieYield) 56-0.36

Problem 1f:

Assume that we are considering the other direction of improving the original processor by
increasing the speed of floating point. What is the best possible speedup that we could get, and
what would the CPI and MIPS rating be of the new processor?

1

The easiest thing to do isuse Amdahl’s law: speedup = asn- oo

T
1-fy+ @=1)

n
(i.e. speeding up floating-point really well). In thiscase, f isthe fraction of time normally
devoted to floating point (in time!). So, f=CPly4/CPI=(0.15x5)+2.35 = 0.319

Max speedup = (1-0.319)'= 1.47
CPI computed with “ zerocycle” floating-point instructions: 2.35-(0.15x5) = 1.6
MIPS= 300/1.6 = 187.5

Problem 2: Parallel Prefix

Assume the following characteristics for NAND gates:
Input load: 120fF,
Internal delay: TPIh=0.3ns, TPhI=0.6ns,
Load-Dependent delay: TPIhf=.0020ns, TPhlf=.0021ns

Problem 2a:
Suppose that we construct an XOR, as follows:

A 3{3 oy

B

Compute the standard parameters for the linear delay models for this complex gate, assuming the
parameters given above for the NAND gate. Assume that a wire doubles the input capacitance
of the gate that it is attached to:

A Input Capacitance: 240fF L oad-dependent Delays:
B Input Capacitance: 240fF TPAYIhf: 0.0020 ng/fF
TPAYhIf: 0.0021 ns/fF
TPBYIhf: 0.0020 ng/fF
TPBYhIf: 0.0021 ng/fF

Maximum Internal delaysfor Al Y:
TPAYIh:

Critical path goes through 3 gates. Low-to-high on output implies high-to-low on inputs to last
gate, which implies low-to-high on input A. Note that the two internal nodes are driven, so we
multiply capacitance by 2:

TPAYIh = 0.3ns+(2)(240fF)(0.0020ng/fF) + 0.6ns + (2)(120fF)(0.0021ng/fF) + 0.3ns = 2.664ns

TPAYNI:

High-to-low on output implies low-to-high on inputs to last gate, which implies high-to-low on
input A.

TPAYhI = 0.6ns + (2)(240fF)(0.0021ns/fF) + 0.3ns + (2)(120fF)(0.0020ns/fF) + 0.6ns = 2.988

An important operation that shows up in many different contexts is the parallel prefix circuit
using XOR as the combining operation. This circuit takes as input a sequence of bits, such as:
[1o, 11, I2, I3,] then outputs a new sequence, [Oog, Oy, Oz, O3,...] which is the same length. The
output bits are related to the input bitsin the following fashion:

[00:|0, 01:(|0D|1), 02:(|0D|1D|2), O3Z(|0D|1D|2D|3),]

Each successive output bit isthe XOR of the new input bit and the previous output bit.

vy
The smallest parallel-prefix circuit has 2
inputs and two outputs. If thisis intended to
be part of alarger parallel prefix circuit, then 7 - C
we need “carry in” and “carry out” terminals C = down
such as shown to the right: up
Problem 2b: +
Using your answers from problem (2a), | |
compute: 1 0
Input capacitance: L oad Dependent Delays for both outputs:
(as many parameter s as appropriate):
lo: 480 fF
[240 fF Let X bewith Igor I and Y be Og or O;.
Caown: 480 fF TPXYlh: 0.0020 ns/fF

TPXYhl: 0.0021 ns/fF

Internal delays for the critical path (identify the critical path and compute delays):

Critical path isfrom inputsto O;. The slow transition is high-to-low on internal node, so set
Caown to make this always go in that direction

TPI0O1hl = TPhlyorH(TPhlIfxor)(2)(Casor) + TPhlyor = 2.988 + (0.0021)(2)(240) + 2.988=6.984ns
TPI 001l = TPhlyor+(TPhlfxor)(2)(Caor) + TPINyor = 2.988 + (0.0021)(2)(240) + 2.664=6.660ns

Problem 2c:
Now, put these 2-input blocks together to produce a 4-input block that takes Iy, 15, I, and 13, and
Caown @nd produces. Op = lo J Cgown
Ol = |1D |0D Cdown
02 = |2D |1D |0D Cdown
03 = |3D |2D |1D |0D Cdown
Cup: |3D |2D |1D |0
Y our god isto minimize the output delay of each block.

Using only blocks from part 2b:

up

o, O, 0, O,
Py Fo)

pel| aa. .
IR

—
o

3 |2

Compute the input capacitance for each input:

lo: 480, 11: 240, 1,: 480, |3: 240, Cgoun: 480

Identify the critical path of your circuit and compute the unloaded delay for this path.
Critical path from 15 to Os. Arrange so that two internal nodes go from high-to-low:

TPI4Oshl = 3xTPhlyo+2x{ TPhlf,or x(2) x(2) x(240)] = 12.996 ns

Problem 2d:

Finally, show how the 4 input prefix circuit can be used as a building block to produce a 16-
element prefix circuit that minimizes gate reuse and which has minimal delay. What isthe
critical path and how many XOR gates are in it?

Hint: thisisvery similar to a carry-lookahead adder.

up

o

w
o

N

up

o
—

ol»-

iy

down

o
o

11

10

9

—» O
o

L L |

N

o
w

o

o
N

S

o0

=

oL

N
L—

'

14 13

15

The critical path isfrom Iy up through the central logic and back through the Cyoun Of the last
stageto Oys0r Ogs,

Adding thisup, we get: 2+ 3+ 2= 7 XOR gates

Problem 2e;

12

11

10

9

8

-

- Ooo

7

—» O

6

5

—» O
N

u|

o
w

—
o

S

o0

N

N

o O

=

oL

L—

—» O
w

—» O
N

@)

o
w

7

6

5

4

up

| —

o
N

—

o

=

o
o

(]

L—

0.)_

How many XOR gates arein the critical path of a 64-bit parallel-prefix circuit?

This adds one more level of blocks. Tracing the first input to last output, we note that we have 2
for each level up, 3 for the top level, and 2 for each level down: 2+ 2+ 3+ 2+ 2= 11 xor

gates.

Problem 3: PI

This problem is not as bad as it looks. 3a and 3b can be done without
understanding the math.

The book “A History of " by Petr Beckmann is an amusing look at the history and politics
behind the number PI. Among other things, this book shows several series that produce Pl. One
in particular is:

7 1 1
“ —4xarctan=-—arctan——
4 5 239

In this problem, we will compute part of this series:

1 1 1 1 1
arctan—=—— + - +
X X 3-x 5x 7%

Fortunately for us, each term of the series is smaller that the previous one by at least iz So,
X

2
this means that each term of arctan(%jis smaller by at least (%j =0.04and each term of

2
ar ctan(%j issmaller by (2—:1%9j <1.8x107°. Thus, the series convergesreally quickly.

The secret to making this work is to note that each term in the series for Pl is of the form
1/big number. Further, alot of these numbers are related to each other. Consider:

1 1_A
== B =—-=20
& X ° 1
1 A 1 A
A12F27 Bl:C~3'x3:?l
1 A 1 A
1
so,arctan—=B —-B, + B, — ...
X

Thus, al we need to do is figure out how to divide one number by another number for an
arbitrary number of decimal places.

Suppose that we have a procedur e that produces an infinite “ stream” of digitsfor the series
Ao. Then, we can input that stream as an input to the divide algorithm that produces A;
(sinceit is Ag divided by some integer like 25 or (239)2. Further, we can send the stream of
digitsfor A;toproduceA; and B;. Etc. That isour trick.

Recall how divide (in base 10) works The following shows a
division of 1 by 23:

Suppose we had a procedure that produced each of the digits
(zeros) in the dividend, one at atime. Consider the remainders
as integers from the current decimal point. So, for instance, we
have the remainders 1, 10, 100, 80, 110, 180, etc. At each
stage, we multiply by ten, add the incoming digit (zero in the
example), then

This could be combined with the current remainder but
multiplying the remainder by 10, adding the new digit (whichis
zero in this case), then seeing how much the result divides the
answer.

Here is complete pseudo code for computing one of the streams
(Note: we have fixed a couple of the typos):

0.04347826

23)1.00000000

1 «
0
1.0 <
0.0
100 «——
0.92

0080 «——
0.069

00110 +——

0.0092

0.00180 +——
0.00161

SJopuewey

St ream(di gi t num i ncom ng, oddnum si gn, xsquared, term D, naxterm D) {

ARenmai nder = A REMARRAY[term D] ;
ARemai nder = ARemmi nder x 10 + incom ng;

; This is a quotient/remai nder operation

(ADigit, ARenminder) = ARenmi nder / xsquared;

A REMARRAY[term D] = ARenai nder;

BRenmai nder B_REMARRAY[term D] ;

BRenmai nder = BRemmi nder x 10 + Adigit;
(BDigit, BRemainder) = BRemai nder / oddnum
B_REMARRAY[term D] = BRenmi nder;

AddInDigit(BDigit, digitnum sign);

If ((termD = nmaxtermD) && (ADigit !'=0)) {

A REMARRAY][t er m D+1]
B REMARRAY[t er ml D+1]
maxt er m D++;

O; /* This was missing originally */

}
If (term D < naxterm D) {
Maxterm D =
Stream(digitnum ADigit, (oddnum+2), -sign,
xsquared, (term D+1), maxterm D);
}

return maxterm D; /* This was missing originally */

10

Problem 3a:

Write MIPS assembly for this pseudo code. Make sure to adhere to MIPS conventions. Assume
that A_ REMARRAY|[] and B_REMARRAY][] are word arrays that are addressed via constants
(assume that you can use the la pseudo instruction to load their addresses into registers. Also,
assume that there are 7 argument registers ($a0 - $a6) for the sake of this problem. Note that

AddInDigit is aprocedure call.

St ream subi u$sp, $sp, 36

sw $ra, 36(%sp)

sw $a0, 32($sp)
<... etc ...>
sw $ab, 8(%$sp)
sl | $t0, $ab, 2
l a $t1, A REMARRAY
addu $t1, $t1, $t0
lw $t2, 0O($t1)
mul $t2, $t2, 10
addu $t2, $t2, $al
divu $t2, $a4
nfhi $t2
sw $t2, 0($t1)
nflo $t3
sw $t3, 4(3$sp)
I a $t1, B_REMARRAY
addu $t1, $t1, $tO
lw $t2, 0O($t1)
mul $t2, $t2, 10
addu $t2, $t2, $t3
divu $t2, $a2
nfhi $t2
sw $t2, 0($t1l)
nove $a2, $a3
nove $al, $a0
nflo $a0
jal Addl nDigit
lw $a0, 32($sp)
lw $al, 4($sp)
lw $a2, 24(3$sp)
lw $a3, 20($sp)
lw $a4, 16($sp)
lw $a5, 12($sp)
lw $v0, 8($sp)
bne $a5, $vO0, final check
beq $t3, $r0, finalcheck
sl $t1, $a5, 2
la $t1, A REMARRAY
addu $t1, $t1, $tO
sw $r0, 4(%$t1l)
I a $t1, B_REMARRAY
addu $t1, $t1, $tO
sw $r0, 4($t1)
addi u$vo, $vo0, 1
final check: blt $a5, $v0, return
addi u$a2, $a2, 2
subu $a3, $r0, $a3
addi u$a5, $a5, 1
jal stream
return: lw $ra, 36($sp)
addi u$sp, $sp, 36
jr $ra

11

7 args, 1 ret addr,
Save return address
Save $a0
Save $al - $ab
Save $ab

1 tenp (ADigit)

Convert termi D to word i ndex

address of ARenmi nder
Get ARenmi nder
X 10 (pseudo instruction)

New renai nder
Save it into array

Save ADigit for later

addr ess of BRenmi nder
Get BRenmi nder

x10 (pseudo-instruction)
Add in ADigit

New BRemai nder
Save back into array

sign (third arg)
di gi tnum (second arg)
Cet BDigit

Restore
Restore
restore
restore
restore
restore
restore

digitnum (arg 1)
ADigit to $al
oddnum

sign

xsquar ed

term D
mexTerm D (will return)
termd !'= maxTerm D

ADi gi t

address of A REMARRAY[term D
store zero at A REMARRAY[tern D+1]

address of B_REMARRAY[term D
store zero at B _REMARRAY[t er m D+1]
maxt er m+

Check term D < maxterm D (pseudo- op)
oddnumt2

sign = -sign

term D+1

restore stack
return

Problem 3b:

The procedure AddInDigit takes 3 arguments. A digit (a number from 0 to 9), a digit position
(digitnum), and a sign. Assume that we have an infinite precision decimal number in memory,
one digit per byte, starting at address FINALVALUE. Assume that “digitnum” specifies a byte
offset from this address at which we need to add (sign =1) or subtract (sign=-1) the incoming
digit. Write this procedure. Assume that the result must be still in decimal. Thus, if you add the
digit at FINALVALUE[digitnum] and it overflows (is bigger than 9), then you must carry to
the next most significant digit (at digitnum-1). Sameistrue of subtract (when sign = -1).

Again assuming no delay slots:

AddInDigit: la $t 0, FI NALVALUE Get address of array
addu $t0, $tO0, $al Address of current digit
| oopit: b $t1, 0($t0) ; get digit
slt $t2, $a2, $r0 ; Sign negative?
bne $t2, $r0, handl eneg : Yup. Go deal with it
add $t1, $t1, $a0 ; Add in new digit
slti $t2, $t1, 10 ; Carry needed?
bne $t2, |astupdate ; Nope. Store digit and exit
subi $t1, $t1, 10 ; subtract extra 10 fromdigit
sw $t1, 0($t0) ; Store updated val ue
subi $t0, $t0, 1 ; Go to next nobst significant digit
addi $a0, $r0, 1 ; Next digit: 1
i | oopi t ; go handle carry
handl eneg: subu $t1, $t1, $a0 ; Subtract digit
slti $t2, $t1, O ; result less than 07?
beqg $t2, |astupdate ; Nope. Store digit and exit
addi $t1, $t1, 10 ; Correct digit
sw $t1, 0($t0) ; Store updated val ue
subi $t0, $t0, 1 ; Go to next nost significant digit
addi $a0, $r0, 1 ; Next digit: 1
i | oopi t ; go handl e borrow
| astupdat e: sw ; wite last digit

$t1, O($tO
$ra ()

12

return

Problem 3c:
Explain theinitialization of the A_ REMVALUE[] and B_REMVALUE][] arraysif we were

going to compute (4~ arctan é) . What is the purpose of the termID and maxter miD

parameters?

We are just going to fold the 4 into our calculations. If we let the 4 be part of the Ag
computation, then every other termwill be multiplied by 4 automatically (since A; depends on

Ao, €tc). Thus, we simply have an outer loop that produces the digits of g one at a time and feed

themto “ stream”. So, wewill use A REMVALUE[] and B_ REMVALUE[] for all terms beyond
thefirst one. Since each new remainder gets zeroed as it is needed, we merely have to set the
first element of each array to zero. Thus, let A REMVALUE[0] = 0 and B_REMVALUE[Q]=0.

The variable terml D tracks which term of the series we are currently working on. Since the first

term (the 1term) isa little special (It isnot derived from other terms by dividing by x2, we will
X

313 term, ter ml D=1 be the 5—15 etc. The maxtermlD isthe maximum
X X

term that we have produced nonzero values for up to now. Note that in the stages of the design,
almost all terms are zero, hence we start ter ml D=maxter ml D=0

let terml D=0 bethe

Problem 3d:
Explain theinitialization of the FINALVALUE array:

Each digit of the FINALVALUE array must beinitialized to zero before it isused. Sncewe are
walking though the “ answer” one digit at a time, we can choose to initialize this digit before we
useit. (I.e. when we are working on the 10"s place, we don’t care what is in the 100™s or
1000"s place, since we know to ignoreit.

Problem 3e:

Write pseudo-code to compute [4- arctan %j using stream(). Assumethat theinitidizationin

(3c) and (3d) are accomplished..

FI NALVALUE[0] =0 ; Set ones place to zero
FI NALVALUE[1] =8 . This is 4/5
A REMVALUE[0] =B_REMVALUE[0] = O ; Start with 1 term

: Handle first digit (10'"s pl ace)
maxterm D = stream(1, 8, 3, -1, 25,0, 0)
for (digitnun=2; true; digitnumedigitnum2) {
FI NALVALUE[di gi tnun] = 0;
maxt er m D=stream(di gitnum O, 3, -1, 25, 0, maxternl D) ;

13

[This page intentionally left blank]

14

Problem 4: New instructions for a multi-cycle data path

PCWr PCWrCond

HG; Zero
lorD MemwWr IRWTr RegDst RegWr
p 32
[32 > Rs
32 9 RAd 2 5 " Ra
r -~
= 5| =X > Rb busAl
ZEN |deal s [[E]1k{c7 5 |RegFile
Memory e Rtj= R
| Wradr © 2|5 || c W
2 ylDin Dout g ||Rdx [busw busB
32 ot
. [1 Mux a\—
> & <<2 Control
Q

Extend
|
ExtOp MemtoReg ALUSEB

The Multi-Cycle datapath developed in class and the book is shown above. In class, we
developed an assembly language for microcode. It isincluded here for reference:

Field Name Vaues For Field Function of Field
Add ALU Adds
Sub ALU subtracts
ALU .
Func ALU does function code (Inst[5:0])
0 ALU doeslogical OR
PC PCO 1% ALU input
SRC1 rs R[rs] O 1% ALU input
4 40 2"ALU input
rt R[rt] O 2™ ALU input
SRC2 Ext end sign ext imm16 (Inst[15:0]) O 2™ ALU input
Ext end0 zero ext imm16 (Inst[15:0]) O 2™ ALU input
Ext Shf t 2" ALU input = sign extended imm16 << 2
rd- ALU ALUout O R[rd]
ALU Dest rt-ALU ALUout O R[rf]
rt-Mem Mem input O R[rt]
Read- PC Read Memory using the PC for the address
Memory Read- ALU Read Memory using the ALUout register for the address
Wite-ALU Write Memory using the ALUout register for the address
MemReg IR Meminput O IR
PC Write ALU ALU valueq PCibm
ALUout Cond If ALU Zeroistrue, then ALUout 0 PC
Seq Go to next sequential microinstruction
Sequence Fet ch Go to the first microinstruction
Di spatch Dispatch using ROM

In class, we made our multicycle machine support the following six MIPS instructions:

15

op|rs|rt|rd]|shamt | funct = MEM[PC]
= MEMI[PC]

R[rt] « R[rg] + zero_ext(Imml6);

PC - PC+4
PC - PC+4
PC - PC+4

R[rtf] « MEM[R[rg] + sign_ext(Imm16)]; PC — PC+4
MEMIR[rg] + sign_ext(Imm16)] — R[rs]; PC - PC+4

op|rsirt| Imm16

INST Register Transfers
ADDU R[rd] —~ R[rg] + RJ[rt];
SUBU R[rd] « R[rg] - R[rt];
ORI

LW

SW

BEQ if (R[rs] ==R[rt])

then PC ~ PC+ 4+ sign_ext(Imm16) || 00
glse PC - PC+4

For your reference, here is the microcode for two of the 6 MIPS instructions:

Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
Fetch Add PC 4 ReadPC IR ALU Seq
Dispatch Add PC ExtShft Dispatch
RType Func rs rt Seq
rd-ALU Fetch
BEQ Sub rs rt ALUoutCond Fetch

In this problem, we are going to add four new instructions to this data path:

j al

add

mfcO

conpmul

<const >

$rd, $rs,
$rd, $rt
$rd, $rs,

$rt

$rt

O

O

PC — zero_ext(Instr[25:0]) || 00O
R[31] -« PC+4
if (R[rs]+ R[rt] doesn’t overflow) then
R[rd] — RIrs] + R[rt]
PC~PC+4
Else
EPC - PC
Cause~12
PC ~ 0x80000080
if ($rt ==13) then
R[rd] — Cause
Elseif ($rt == 14) then
R[rd] - EPC
PC - PC+4

R[rd]=(R[rs]xR[rt]) — (R[rs+1] xR[rt+1])
R[rd+1]= (R[rs]xR[rt])+(R[rs+1] xR[rt+1])
PC - PC+4

Thismath was a typo. Thereal way to compute complex multiplyis:

conpnul

$rd, 9$rs,

$rt

O R[rd]=(R[rs|xR[rt]) — (R[rs+1]xR[rt+1])

R[rd+1]= (R[rs]xR[rt+1])+(R[rs+1] xR[rt])
PC - PC+4

We will give the solution with the original spec (for fairness)

16

Thej al instruction isfamiliar to you from the normal MIPS instruction set.

2. The add instruction is a normal add except that it causes an overflow exception if there is
overflow. You need to implement the EPC (error PC) and Cause registers. Just assume that
EPC getsthe PC of the bad instruction and Cause gets the number 12.

3. Thenf cO instruction isused to get the EPC and Cause values into normal registers

The conpmul instruction does a complex multiply. It is assumed that the registers rd, rs,

and rt are even registers and that the two source complex values are in R[rg], R[rs+1] (redl,

imaginary) and R[rt], R[rt+1] (real, imaginary), and that the results are put into R[rd] and

R[rd+1] (real,imaginary).

Lo

>

Problem 4a: (2 pts)
How wide are microinstructions in the original datapath (answer in bits and show some work!)?

2+14+3+2+2+ 1+ 2+ 2= 15hitswide

The trickiest part of this computation is the PC Write field. We have to remember to represent the “ do
nothing” option, which means that there are actually three different values for the PC Write field.

Problem 4b: (4 points)

Draw a block diagram of a microcontroller that will support the new instructions (it will be
dightly different than that required for the original instructions). Include sequencing hardware,
the dispatch ROM, the microcode ROM, and decode blocks to turn the fields of the microcode
into control signals. Make sure to show al of the control signals coming from somewhere. (hint:
The PCWr, PCWrCond, and PCSrc signals must come out of a block connected to thePCWrite

field of the microinstruction).

22

. 2 2 3 3 1 3 1 1
microPC
F Y
[w ﬁ Z o bt % o
GD 2 Bl |2 S 512 2] [8]]¢
MUX E | g A -
Fy o
s i
EoE oEmE O HEL 2 g
S = = B Ao eF2 B B ga0 4 H o7
- l4—— CanException 5 ; 9.9 ”% %%U B & gg%’) bl g é_ é_
l—— Owerflow * % Tap g :? ¢l & go TR
. £ o s
o 2 =

Exception

Dispatch
ROM

2 points were given for drawing a decent microcontroller for the old datapath. 1 point was given if the
branching (exception) mechanism was implemented with a mux. Another point was given for showing
some new control signals (EPCWrite is the most notable).

17

Problem 4c: (15 points)

Describe/sketch the modifications needed to the datapath for the new instructions (j al , add,
nf cO, and conpnul). Asume that the original datapath had only enough functionality to
implement the original 6 instructions. Try to add as little additional hardware as possible. Make

sure that you are very clear about your changes.

j al : 3points
1) Expand PCSc mux to take in jump address.

Alternatively, you could have modified the extender to
take in 26 bits and have additional functionality. This

PC &

PCire

z/i/
2

%2 32

1 t«

() P S

ATLTIOnat

solution requires more hardware though, and you
would also need to either create a way for SRC1 to be
zero or draw a wire from the output of the <<2 shifter

32

0000 || Instef26 07 || 00

to the PCS ¢ mux. o e ,irl,.
5
:
m
B
g
2) Expand RegDst mux to take in constant 31. RegDst
1
Et % 0
R — 2 o 1 —/;-5
5 2
ST, SN
3) Expand MemtoReg mux to takein PC.
32
This was the most commonly omitted part. Part of the
reason it looks okay to omit at first isthat SRC1 canbethe k.. 2 ——

PC. However, if we used this, we would need a way to force
SRC2 to be zero. Furthermore, j al would require 4
instructionsinstead of just 3.

AL Cnat

Mem Data Reg

add: 4 points
1) Give ALU an overflow output:.

2) Add EPC and Causeregisters.
The given spec doesn'’t let Cause take on

values other than 12, so it was okay to
just omit the cause register and use a

EPCCase Wy

EPCC oz

32

ALT _/,L,

hardcoded 12.

EFC

32

Cauge

3) Expand PCSc mux to take in 0x80000080. 2
dcmny
32 1
e 2 i 0000 || Instr[26 07| 00
3 4—,./—32 OxE0000020
nf cO: 4 points $20]
1) 13 and 14 only differ by 1 bit, so just use a mux J’
with the LSB of $rt as the selector to choose
between Cause and EPC. Any other values of 32
$rt are dontcares. B —L g | 32

Cause#hl

2) Expand MemtoReg mux to take in the CauseOrEPC.

Alternatively, some students expanded SRC1 to be able
to have the value of CauseOrEPC, but this has the
disadvantage that you need to create a way for SRC2
to be forced to zero, and mfcO would then require 4
instead of 3 microinstructions.

32 L CanseCrEPC

32 ,‘/
a2
2

IMentoFegz +p 0 1
b

32

ALTCht

Mem Data Reg

CanseCrEPC

conmprmul : 4 points

Correction: The math in the original test waswrong. The spec given on the exam was:
conpnul $rd, $rs, $rt => R[rd] € (R[rs]*R[rt]) — (R[rs+1]* R[rt+1])
R[rd+1] €« (R[rs]*R[rt]) + (R[rs+1]*R[rt+1])

PC<PC+4

But anyways, this error makes the problem a bit simpler,
because with the buggy problem we need to calculate only
two products instead of four, so this solution will go with
the original instructions.

1) Add 32-bit multiplication capability. Either add

the multiply operation to the ALU or put down a
multiplier that takes in the same inputs as the ALU.

19

2) Add registersto store products.

You need at least two. Well, actually if a
multiply-accumulate unit is used instead
of a multiplier, you could go with just
one, but that would make things
complicated.

3) Expand ALUSEA and ALUSEIB muxes
to take in these products.

AL eld

ALTTSe]B

32

o8]
L]

Extend

Prduetl 2 o) 4

20

Product] Wr

Product!

ProductdWr

Productl

4) Add capability to read rs+1 and rt+ 1.

Ra[5:1]

5

¥

Ba[l] —
RegtddOre ——

4
Bi[3:1]

¥

B[] ———
RegtddOre ——w

Some students did this with 5-bit adders and
muxes. That's fine, but you don’'t need that

much hardware because the
guaranteed to be even.

registers

5) Add capability to read rd+1.

EegDist

are

Problem 4d:
Describe changes to the microinstruction assembly language for these new instructions. How
wide are your microinstructions now?

ALU: no changes 4 values =2 4 values (0 new bits)
SRC1: 1 new value: Productl 2 values 2 3 values (1 new bit)
SRC2: 1 new value: Product2 5 values 2 6 values (0 new hits)
ALU Dest: 3 new values: 31-PC

rd-CauseorEPC, rd+1-ALU 4 values 2 7 values (1 new bit)
Memory: no changes 3 values =2 3 values (0 new bits)
MemReg: no changes 2 values 2 2 values (0 new hits)
PCWrite: 2 new values. JumpAddr, Kernel 3values 2 5 values (1 new bit)
Sequence: 1 new value: SeqCanException 3values 2 4 values (0 new bits)
*RsandRt: 2 new values. RegEven, RegOdd 0 values 2 2 values (1 new bit)
*EPCCause: 2 new values. EPCCauseWr, (do nothing) 0 values 2 2 values (1 new bit)
* Products: 3 new values: Productl, Product2,

(do nothing) 0 values = 3 values (2 new bits)

15+0+1+0+14+0+0+1+0+1+1+2=22hitswide

Answers may vary alot, e.g. you may have:
Added a multiply value to the ALU field.
Altered the extender so that SRC2 would require another value, say Extend26.
Added a zero value to SRC1.
Added a zero value to SRC2.
Put SeqCanException in a field by itself.
Made separ ate fields for the Cause and EPC registers.

Or done even some other things differently that would still be correct if they matched your answer in 4b,
4d, and 4f.

4 points were given for having most of the proper microcode changes.

1 point was given for summing to some number for a new microinstruction width, and knowing that 1 new
val ue does not equate to 1 new bit.

21

Problem 4e: 4 points

Write complete microcode for the new instructions. Include the Fetch and Dispatch
microinstructions. If any of the microcode for the original instructions must change, explain how
(Hint: since the original instructions did not use R[rd] as a register input, you must make sure
that your changes do not mess up the original instructions).

Label ALU SRC1 SRC2 ALU Dest Memory |MemReg |PCWrite Sequence RsandRt CauseEPC Products
Fet ch Add PC 4 ReadPC IR ALU Seq
Di spatch |Add PC ExtShift Dispatch RegEven
Jal 31-PC JumpAddr__[Fetch
Add Add rs rt SeqCanException
rd-ALU Fetch
Except i on |Sub PC 4 Kernel Fetch CauseEPCWr
MfcO rd-CauseorEPC Fetch
Conpmul rs rt Seq RegOdd Productl
rs rt Seq Product2
Sub Productl |Product2 Seq
Add Productl |Product2 |rd-ALU Seq
rd+1-ALU Fetch

1 point was given for each mostly correct instruction.
Many students neglected to copy down the Fetch and Dispatch microinstructions.

Some students did j al in 4 microinstructionsinstead of 3. This should be okay if it matches your answer
in part 4d.

There should be a separate microinstruction for exception, rather than an add microinstruction that can
do two different things.

The EPC is generated by subtracting the new PC — 4.

Conversely, nf c0 should not be done by two different microinstruction paths, because then you would
need to lay down more branching hardware in the microcontroller.

For conpnul , many students didn’t specify where to store the products.

22

