	N	ame
--	---	-----

CS-172 David Wolfe

Each of the following questions counts equally. Try to keep your answers succinct.

Pumping Lemma: If L is regular then $(\exists n)(\forall z \in L, |z| \ge n)(\exists uvw \text{ such that } z = uvw \text{ and } |uv| \le n \text{ and } |v| \ge 1)(\forall i) : uv^i w \in L.$

- 1. Let language L be given by the regular expression 10^*1 .
 - (a) Construct a DFA accepting L.
 - (b) Construct a DFA accepting \overline{L} .
 - (c) Construct a regular expression for \overline{L} . If your expression is complicated, you should be able to give a succinct overview in english to convince me that your expression is correct.
- 2. We wish to prove that $L = \{0^i 1^j : \gcd(i, j) = 1\}$ is not regular. Recall that $\gcd(i, j) = 1$ if i and j have no factors in common. So, $0^{10} 1^3 \in L$, $0^5 1^5 \notin L$ and $0^6 1^{10} \notin L$. Here are three "proofs" that L is not regular, one correct. Identify the correct proof with a \bigstar , and succinctly explain what is wrong with the other two proofs. (Hint: The incorrect proofs use the pumping lemma wrong nothing is wrong with the algebra.)
 - (a) It suffices to show that \overline{L} is not regular. Fix n in the pumping lemma. If $z = 0^p 1^p \in \overline{L}$ for prime p > n+1 and let z = uvw as in the lemma. No matter what uvw, $uw = 0^l 1^p$ for some 1 < l < p and gcd(l, p) = 1. So $uw \notin \overline{L}$ and \overline{L} is not regular.
 - (b) Fix n in the pumping lemma. Note that consecutive numbers above 1 cannot have a common factor. So the string $z = 0^{2n+1}1^{2n} \in L$. Choose z = uvw as in the lemma, where $v = 0^l$ for l odd. $uw = 0^{2n+1-l}1^{2n} \notin L$ since both 2n + 1 l and 2n are divible by 2. Hence L is not regular.
 - (c) Fix n in the pumping lemma. Without loss of generality, $n \ge 2$. Choose $z = 0^n 1^n \notin L$ and fix z = uvw. Now v must be of the form 0^l , $1 \le l \le n$. Then $uv^{n+1}w = 0^{n+ln}1^n \notin L$ since both n + ln and n are divisible by n. Hence, L is not regular.