David Wolfe
Each of the following questions counts equally. Try to keep your answers succinct.

```
Pumping Lemma:
If \(L\) is regular then
    \((\exists n)(\forall z \in L,|z| \geq n)(\exists u v w\) such that \(z=u v w\) and \(|u v| \leq n\) and \(|v| \geq 1)(\forall i): u v^{i} w \in L\).
```

1. Let language L be given by the regular expression $10^{*} 1$.
(a) Construct a DFA accepting L.
(b) Construct a DFA accepting \bar{L}.
(c) Construct a regular expression for \bar{L}. If your expression is complicated, you should be able to give a succinct overview in english to convince me that your expression is correct.
2. We wish to prove that $L=\left\{0^{i} 1^{j}: \operatorname{gcd}(i, j)=1\right\}$ is not regular. Recall that $\operatorname{gcd}(i, j)=1$ if i and j have no factors in common. So, $0^{10} 1^{3} \in L, 0^{5} 1^{5} \notin L$ and $0^{6} 1^{10} \notin L$. Here are three "proofs" that L is not regular, one correct. Identify the correct proof with a \star, and succinctly explain what is wrong with the other two proofs. (Hint: The incorrect proofs use the pumping lemma wrong - nothing is wrong with the algebra.)
(a) It suffices to show that \bar{L} is not regular. Fix n in the pumping lemma. If $z=0^{p} 1^{p} \in \bar{L}$ for prime $p>n+1$ and let $z=u v w$ as in the lemma. No matter what $u v w, u w=0^{l} 1^{p}$ for some $1<l<p$ and $\operatorname{gcd}(l, p)=1$. So $u w \notin \bar{L}$ and \bar{L} is not regular.
(b) Fix n in the pumping lemma. Note that consecutive numbers above 1 cannot have a common factor. So the string $z=0^{2 n+1} 1^{2 n} \in L$. Choose $z=u v w$ as in the lemma, where $v=0^{l}$ for l odd. $u w=0^{2 n+1-l} 1^{2 n} \notin L$ since both $2 n+1-l$ and $2 n$ are divible by 2 . Hence L is not regular.
(c) Fix n in the pumping lemma. Without loss of generality, $n \geq 2$. Choose $z=0^{n} 1^{n} \notin L$ and fix $z=u v w$. Now v must be of the form $0^{l}, 1 \leq l \leq n$. Then $u v^{n+1} w=0^{n+l n} 1^{n} \notin L$ since both $n+l n$ and n are divisible by n. Hence, L is not regular.
