Problem 1. (90 points) Let $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$ be two finite automata over a common alphabet.

a. Construct a finite automaton $M = (Q, \delta, q_0, F)$ such that $L(M)$ contains precisely the words in $L(M_1)$ which have a suffix in $L(M_2)$.

b. Apply your construction from part (a) to the following two automata.

c. Is the result from part (b) deterministic? If not, use the subset construction to determinize it.

d. Is the result from part (c) minimal? If not, use the minimization algorithm to minimize it.

e. Let A be the language of the automata from parts (b)–(c). What is the index of A? Describe each \equiv_A-equivalence class by a regular expression.

You can double check your result by thinking about which languages are accepted by the automata of part (b), and which language results from applying the operation of part (a) to these languages.

Solution 1.

a. We construct a nondeterministic machine that has two parts: a copy of machine M_1, and a copy of the product machine $M_1 \times M_2$. It starts out by simulating the machine M_1, and at each state, guesses if the “correct” suffix starts there (and switches to simulating the product machine). The machine accepts if finally both machines in the product accepts. The formal construction of M is:

$$
Q = Q_1 \cup Q_1 \times Q_2
$$

$$
\delta(q, a) = \{\delta_1(q, a)\}
$$

$$
\delta(q, \epsilon) = \{(q, s_2)\}
$$

$$
\delta((q, q'), a) = \{(\delta_1(q, a), \delta_2(q', a))\}
$$

$$
q_0 = s_1
$$

$$
F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ and } q_2 \in F_2\}
$$

b. When we do the construction in part (a), we get
c. On determinizing the automaton from part (b) we get:

where we write 1 for the state Aα, 2 for the state Aβ, 3 for the state Bα and 4 for the state Bβ.

d. Run the minimization algorithm on the machine from part (c).

The states A2 and A12 are equivalent, so are B4 and B34. The minimal automaton accepting the same language is
e The index of the language is 4 (size of the minimal automaton). The \(\equiv_A \) classes are:

\[
\begin{align*}
\equiv_A & : \epsilon \\
\equiv_{A2,A12} & : 00^* \\
\equiv_{B3} & : 11^* \\
\equiv_{B4,B34} & : (11^*0 \cup 00^*1)(0 \cup 1)^*
\end{align*}
\]

Problem 2. (60 points) For the two languages \(B_1 \) and \(B_2 \) defined below do the following.

If \(B_i \) is regular: Give a finite automaton that recognizes \(B_i \).

If \(B_i \) is not regular: Give both a proof that \(B_i \) is not regular (use the pumping lemma or the fact that \(\{0^n1^n : n \geq 0\} \) is not regular) and a pushdown automaton that recognizes \(B_i \).

a. \(B_1 \) is the set of all words in \(\{0,1\}^* \) that contain an equal number of occurrences of 00 and 11. (Count overlapping occurrences; for example, 110001111 contains 2 occurrences of 00 and 4 occurrences of 11.)

b. \(B_2 \) is the set of all words in \(\{0,1\}^* \) that contain an equal number of occurrences of 01 and 10.

Before you begin to answer the questions, think about which words are in \(B_1 \) and \(B_2 \), and which are not, by listing a few examples.

Solution 2.

a. \(B_1 \) is not regular. Consider the words \(0^n1^n \). These are in \(B_1 \) (there are \(n-1 \) occurrences each of 00 and 11). Suppose we take the language \(L = B_1 \cap 0^n1^n \). Then \(L = \{0^n1^n : n \geq 0\} \cup \{0,1\} \). We are almost there! We know that the language \(\{0,1\} \) is regular, hence so is the language \(L' = \{0,1\}^* \setminus \{0,1\} \) (closure under complementation). Thus, we take \(L'' = L \cap L' \).

Equivalently, \(L'' = B_1 \cap (0^n1^n \cap (\{0,1\}^* \setminus \{0,1\})) \). But \(L'' \) is the language \(\{0^n1^n : n \geq 0\} \).

If \(B_1 \) were regular, then so would be \(L'' \) because \(L'' \) is the intersection of \(B_1 \) with a regular language. Hence, \(B_1 \) must be nonregular.

However, \(B_1 \) is context free. We define a pushdown automaton that accepts \(B_1 \). The pushdown automaton accepting \(B_1 \) will have two stack symbols: \(Z \) and \(O \) (standing for 00 and 11 respectively). If the automaton reads a 00, and the top of the stack is a \(O \), the stack is popped (the \(O \) on the top is matched with this 00), else a new \(Z \) is pushed. Similarly, if the automaton reads a 11, and the top of the stack is a \(Z \), the stack is popped (the \(Z \) on the top is matched with this 11), else a new \(O \) is pushed. Finally, the word is accepted if at the end
the automaton is in a final state and the stack does not contain a Z or a O at the top. The formal construction follows.

$$Q = \{s_s, s_0, s_1, s_f, s_r\}$$
$$\Sigma = \{0, 1\}$$
$$\Gamma = \{Z, O, \text{BOTH}\}$$

$$\delta(s_s, 0, \text{BOTH}) = (s_0, \text{BOTH})$$
$$\delta(s_s, 0, \text{BOTH}) = (s_1, \text{BOTH})$$
$$\delta(s_0, 0, Z) = (s_0, ZZ)$$
$$\delta(s_0, 0, O) = (s_0, \varepsilon)$$
$$\delta(s_0, 1, Z) = (s_1, Z)$$
$$\delta(s_0, 1, O) = (s_1, O)$$
$$\delta(s_1, 0, Z) = (s_1, \varepsilon)$$
$$\delta(s_1, 0, O) = (s_1, OO)$$
$$\delta(s_1, 1, O) = (s_1, O)$$
$$\delta(s_1, 0, Z) = (s_0, Z)$$
$$\delta(s_1, 0, O) = (s_0, O)$$
$$\delta(s_0, \varepsilon, \text{BOTH}) = (s_f, \text{BOTH})$$
$$\delta(s_1, \varepsilon, \text{BOTH}) = (s_f, \text{BOTH})$$
$$\delta(s_f, 0, \text{BOTH}) = (s_r, \text{BOTH})$$
$$\delta(s_f, 1, \text{BOTH}) = (s_r, \text{BOTH})$$

$$q_0 = s_s$$
$$Z_0 = \text{BOTH}$$
$$F = \{s_f\}$$

The start state is s_s, the state s_0 (respectively, s_1 corresponds to a state where the last symbol seen is a 0 (respectively, a 1). The state s_f is a final state, and s_r is a reject state.

b Note that the 01’s and the 10’s occur in pairs: we cannot have two 01’s without having a 10 in the middle. Hence, we can recognize this language with only a finite amount of memory, and this language is regular. Here is a finite automaton for B_2: