Try to keep your answers succinct. The exam is CLOSED BOOK. All questions count equally. First, a few helpful theorems and definitions. Just because a theorem is mentioned, it may not be helpful on the exam.

Lemma: The Pumping Lemma

If L is regular

then $\exists n(\forall z \in L \text{ such that } |z| \geq n)(\exists uw \text{ such that } z = uwv \text{ and } |u| \leq n \text{ and } |v| \geq 1)(\forall i) : u^iw \in L$

Lemma: The contrapositive of the Pumping Lemma

If $(\forall n)(\exists z \in L \text{ such that } |z| \geq n)(\forall uvw \text{ such that } z = uvw \text{ and } |uw| \leq n \text{ and } |v| \geq 1)(\exists i) : u^iw \notin L$

then L is not regular.

Theorem: Rice’s theorems: Let L_P be the set of machines with property P. If P is non-trivial, L_P is undecidable. Further, L_P is r.e. if and only if P satisfies the following three conditions:

1. If $L \in P$ and $L \subseteq L'$ for some r.e. L', then $L' \in P$.
2. If L is an infinite language in P, then there exists a finite subset of L in P.
3. The set of finite languages in P is enumerable.

3-SATISFIABILITY (3SAT)

INSTANCE: A boolean formula, F, which is an AND of clauses where each clause is an OR of 3 literals.

QUESTION: Is F satisfiable?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set $M \subseteq W \times X \times Y$, where $|W| = |X| = |Y| = q$ are disjoint sets.

QUESTION: Does M contain a matching, $M' \subseteq M$, such that no two elements of M' agree in any coordinate.

VERTEX COVER (VC)

INSTANCE: A graph G and integer K

QUESTION: Is there a subset of K vertices which cover all the edges?

CLIQUE

INSTANCE: A graph G and integer K

QUESTION: Does the graph contain a clique (completely connected subgraph) of K vertices?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G

QUESTION: Is there a cycle through all the vertices of G

PARTITION

INSTANCE: A finite set A and a “size” $s(a) \in \mathbb{Z}^+$ for each $a \in A$.

QUESTION: Is there a subset $A' \subseteq A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$$
1. Prove or disprove the following languages are regular:

 (a) \(L_a = \{ a^t b^s : s \geq t \geq 1 \} \).

 (b) \(L_b = \{ a^t b^s : t > s \geq 1 \} \). For the proof, use set closure properties and your result about \(L_a \). No credit for using the pumping lemma.

 (c) \(L_c = \{ w : w \text{ contains the substring } 0011 \} \)

2. Which of the following are r.e.? Give a proof. (Hint: Any reductions can be done from \(L_a \) by creating an \(M' \) from \(\langle M, w \rangle \) which accepts either \(\emptyset \) or \(\Sigma^* \) depending on whether \(M(w) \) rejects or accepts.)

 (a) \(L_{3M} = \{ \langle M_1, M_2, M_3 \rangle : \text{At least two of the machines accept the same language.} \} \)

 (b) \(L_{\overline{3M}} \)

 (c) \(L = \{ \langle M \rangle : M(e) \text{ never moves past the } |Q|^\text{th} \text{ tape square}. \text{ (}Q\text{ is the set of states of } M.\text{)} \} \)

3. Of the following three problems, prove one is in NP, prove one in co-NP, and prove the third is in P.

 (a) INSTANCE: Two graphs on the same vertex set \(G = (V, E) \) and \(H = (V, E') \).
 QUESTION: Are \(G \) and \(H \) non-isomorphic?
 (Note that it says “non-isomorphic” rather than “isomorphic”.)

 (b) INSTANCE: A boolean formula, \(F \), on the 100 variables \(\{x_1, \ldots, x_{100}\} \).
 QUESTION: Is \(F \) unsatisfiable?

 (c) INSTANCE: A binary number \(n > 1 \) in binary.
 QUESTION: Is \(n \) composite? (“Composite” means “not prime”).

4. Prove FEEDBACK VERTEX SET is NP-complete.

 FEEDBACK VERTEX SET

 INSTANCE: Directed graph \(G = (V, E) \) and integer \(K \).

 QUESTION: Is there a subset \(V' \subset V \) such that \(|V'| \leq K \) and every directed circuit in \(G \) includes at least one vertex from \(V' \).

5. Prove HITTING STRING is NP-complete:

 INSTANCE: An integer \(n \) and a set of strings \(A \subset \{0,1,\#\}^n \).

 QUESTION: Is there a string \(x \in \{0,1\}^n \) such that for each string \(a \in A \) there is some \(i, 1 \leq i \leq n \), for which the \(i^{th} \) symbol of \(a \) and the \(i^{th} \) symbol of \(x \) are identical.

 For example, \(A = \{11\#0,0###\#,\#0\#,\#\#\#1,0\#1\#\} \) is a positive instance by choosing \(x = 0101 \).