Problem 1. (75 points) Consider the regular expression \(R = (0 \cup 10 \cup 100)^* \).

a. Draw a nondeterministic finite automaton \(N \) such that \(L(N) = L(R) \). (You may take shortcuts that omit \(\varepsilon \) transitions.)

b. Use the subset construction to draw a deterministic finite automaton \(D \) such that \(L(D) = L(N) \). (Label each state of \(D \) with the corresponding set of states of \(N \).)

c. Use the minimization algorithm followed by the quotient construction to draw a minimal DFA \(M \) such that \(L(M) = L(D) \). (Label each state of \(M \) with the corresponding equivalence class of states of \(D \).)

d. What is the index of \(L(R) \)? If the index of \(L(R) \) is \(k \), give \(k \) words \(w_1, \ldots, w_k \) such that no two of the words are \(\equiv_{L(R)} \) equivalent. (You need not justify your answers.)

e. Give a regular expression \(S \) such that \(L(S) = [1]_{\equiv_{L(R)}} \). (Here \([1]_{\equiv_{L(R)}} \) stands for the \(\equiv_{L(R)} \) equivalence class of the one-letter word \(1 \).)

Problem 2. (75 points) For every language \(A \subseteq \Sigma^* \), we define the following two languages:

\[
\text{double1}(A) = \{x_1 x_2 x_3 \ldots x_{2n} \in \Sigma^* \mid n \geq 0 \text{ and } x_1 x_2 x_3 \ldots x_n \in A\}
\]

\[
\text{double2}(A) = \{x_1 x_2 x_3 \ldots x_{2n} \in \Sigma^* \mid n \geq 0 \text{ and } x_1 x_3 x_5 \ldots x_{2n-1} \in A\}
\]

a. For \(\Sigma = \{0, 1\} \) and \(B = L(0^*) \), describe in words the two languages \(\text{double1}(B) \) and \(\text{double2}(B) \).

b. Which of the following two statements are true and which are false?

S1 If \(A \) is a regular language, then \(\text{double1}(A) \) is also regular.

S2 If \(A \) is a regular language, then \(\text{double2}(A) \) is also regular.

To argue that one of these statements is true, you must define a finite automaton \(M' = (Q', \Sigma', \delta', q_0', F') \) that accepts \(\text{double}(A) \) from a given finite automaton \(M = (Q, \Sigma, \delta, q_0, F) \) that accepts \(A \).

To argue that one of these statements is false, you must find a regular language \(A \) and prove, using the pumping lemma, that \(\text{double}(A) \) is not regular.