```
CS 172 - Fall 1997
    Prelim 1
Computability and Complexity
October 1, 1997
```

Problem 1. (75 points) Consider the regular expression $R=(0 \cup 10 \cup 100)^{*}$.
a. Draw a nondeterministic finite automaton N such that $L(N)=L(R)$. (You may take shortcuts that omit ε transitions.)
b. Use the subset construction to draw a deterministic finite automaton D such that $L(D)=$ $L(N)$. (Label each state of D with the corresponding set of states of N.)
c. Use the minimization algorithm followed by the quotient construction to draw a minimal DFA M such that $L(M)=L(D)$. (Label each state of M with the corresponding equivalence class of states of D.)
d. What is the index of $L(R)$? If the index of $L(R)$ is k, give k words w_{1}, \ldots, w_{k} such that no two of the words are $\equiv_{L(R)}$ equivalent. (You need not justify your answers.)
e. Give a regular expression S such that $L(S)=[1]_{\equiv_{L(R)}}$. (Here $[1]_{\equiv_{L(R)}}$ stands for the $\equiv_{L(R)}$ equivalence class of the one-letter word 1.)

Problem 2. (75 points) For every language $A \subseteq \Sigma^{*}$, we define the following two languages:

$$
\begin{aligned}
& \text { double } 1(A)=\left\{x_{1} x_{2} x_{3} \ldots x_{2 n} \in \Sigma^{*} \mid n \geq 0 \text { and } x_{1} x_{2} x_{3} \ldots x_{n} \in A\right\} \\
& \text { double } 2(A)=\left\{x_{1} x_{2} x_{3} \ldots x_{2 n} \in \Sigma^{*} \mid n \geq 0 \text { and } x_{1} x_{3} x_{5} \ldots x_{2 n-1} \in A\right\}
\end{aligned}
$$

a. For $\Sigma=\{0,1\}$ and $B=L\left(0^{*}\right)$, describe in words the two languages double $1(B)$ and double 2(B).
b. Which of the following two statements are true and which are false?

S1 If A is a regular language, then double $1(A)$ is also regular.
S2 If A is a regular language, then double $2(A)$ is also regular.
To argue that one of these statements is true, you must define a finite automaton $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ that accepts double (A) from a given finite automaton $M=$ $\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts A.
To argue that one of these statements is false, you must find a regular language A and prove, using the pumping lemma, that double (A) is not regular.

