CS 172 - Spring 2000	Final Exam
Computability and Complexity	May 19, 2000

Problem 1. (100 points) Given a word w, the stutter reduction $[w]$ is the word that results from w by deleting repeated adjacent occurrences of the same letter. For example, $[a a b c c c b b a b b b b b]=$ $a b c b a b$. Given a language A, let $[A]=\{[w] \mid w \in A\}$ be the set of stutter reductions of words in A. If A is a regular language, does it necessarily follow that $[A]$ is also regular? Prove your answer.

Problem 2. (100 points) Let B_{1} be the set of quantified boolean formulas whose operators are taken from the set $\{\wedge, \vee, \neg\}$ (arbitrarily nested) and whose variables are letters from the set $V_{1}=\{x, y, z\}$. We require that every variable is bound by a quantifier. For example, $(\forall x)(\exists y)(x \vee y)$ is in B_{1}, whereas $(\forall x)(x \vee y)$ is not. You may assume that all quantifiers occur at the beginning of a formula, and you are free to choose the precise syntax of formulas (where to put parentheses etc.). Let B_{2} be the set of quantified boolean formulas whose variables are words from the set $V_{2}=\{x, y, z\}^{*}$. For example, $(\forall x x)(\exists x y x)(x x \vee x y x)$ is in B_{2} (note that $x x$ is one variable, and $x y x$ is another one). Unlike the formulas in B_{1}, the formulas in B_{2} have an unlimited supply of variables. Is B_{1} context-free? What about B_{2} ? Prove your answers.

Problem 3. (100 points) Let C_{1} be the set of all pairs $\langle M, w\rangle$, where M is a deterministic Turing machine whose computation on input w visits at most half of the non-blank tape cells (i.e., the machine M accepts, rejects, or loops without moving past the midpoint of the input w). Let C_{2} be the set of all pairs $\langle M, w\rangle$, where M is a deterministic Turing machine whose computation on input w visits at most half of the states of M. Is C_{1} recursive or r.e. or co-r.e. or neither? What about C_{2} ? Prove your answers.

Problem 4. (100 points) A regular expression is star-free iff it does not contain the * operator. Prove that the following language is NP-complete:

$$
\begin{gathered}
\overline{\text { STARFREEUNIVERSALITY }}=\{\langle R, k\rangle \mid R \text { is a star-free regular expression and } k \text { is a } \\
\text { nonnegative integer and } \left.L(R) \neq\{0,1\}^{k}\right\}
\end{gathered}
$$

Here $\{0,1\}^{k}$ is the language that contains all words of length k with letters from $\{0,1\}$. To prove containment in NP, give a certificate and show that it can be verified in polynomial time. To prove hardness for NP, reduce 3Sat to Starfreedniversality in polynomial time.
Hint: Think of the truth-value assignment that assigns false to all variables as the word $00 \ldots 0$, and the truth-value assignment that assigns true to all variables as the word $11 \ldots 1$. Given a 3 cnf formula ϕ, construct a star-free regular expression R and an integer k so that the truthvalue assignments that satisfy ϕ correspond to words of length k that are rejected by R, and the truth-value assignments that do not satisfy ϕ correspond to words of length k that are accepted by R.

