Professor Oliver M. O'Reilly

First Midterm Examination Thursday October 7 2004 Closed Books and Closed Notes Answer All Three Questions

Question 1

A Particle Subject to Two Constraints 20 Points

Suppose that the motion of a particle is subject to the following constraints:

$$(x\mathbf{E}_2) \cdot \mathbf{v} = 0,$$

 $(\mathbf{E}_3) \cdot \mathbf{v} = 0.$ (1)

- (a) (5 Points) Show that one of the constraints (1) is non-integrable. In addition, for the integrable constraint, calculate the function $\psi(\mathbf{r}, t) = 0$.
- (b) (5 Points) Give a graphical interpretation of the effects of the constraints (1) on the possible motions of a particle. Show in particular that the non-integrable constraint does not place restrictions on where the particle can move but rather how it moves from one location to another.
- (c) (5 Points) Give prescriptions for the constraint forces associated with the constraints (1).
- (d) (5 Points) Suppose that, in addition to the constraint forces, a gravitational force $-mg\mathbf{E}_3$ acts on the particle. Using $\mathbf{F}=m\mathbf{a}$, determine the motion of the particle and the constraint forces.

A Particle Moving on a Curve 20 Points

Consider a smooth curve which is parameterized by its arc-length parameter s. The position vector of a point on the curve is defined by $\mathbf{r} = \mathbf{r}(s(t))$. Associated with this curve, we define the Serret-Frenet triad $\{\mathbf{e}_t, \mathbf{e}_n, \mathbf{e}_b\}$:

$$\mathbf{e}_{t} = \frac{d\mathbf{r}}{ds}, \quad \kappa \mathbf{e}_{n} = \frac{d\mathbf{e}_{t}}{ds}, \quad \mathbf{e}_{b} = \mathbf{e}_{t} \times \mathbf{e}_{n},$$
 (2)

where κ is the curvature of the space curve.

(a) (5 Points) Given, that the torsion τ and curvature are defined by the relations

$$\kappa \mathbf{e}_n = \frac{d\mathbf{e}_t}{ds}, \quad \tau \mathbf{e}_n = -\frac{d\mathbf{e}_b}{ds},$$
(3)

show that

$$\frac{d\mathbf{e}_n}{ds} = -\kappa \mathbf{e}_t + \tau \mathbf{e}_b. \tag{4}$$

(b) (5 Points) For a particle moving on the space curve, show, with the help of (2), that

$$\dot{\kappa} = v \frac{d\kappa}{ds}$$
, $\mathbf{v} = v \mathbf{e}_t$, $\mathbf{a} = \dot{v} \mathbf{e}_t + \kappa v^2 \mathbf{e}_n$, (5)

where $v = \dot{s}$.

(c) (5 Points) The time-derivative of acceleration, or jerk, is a measure of comfort. Show that the jerk of the particle is

$$\dot{\mathbf{a}} = \left(\ddot{v} - \kappa^2 v^3\right) \mathbf{e}_t + \left(3\kappa v \dot{v} + v^3 \frac{d\kappa}{ds}\right) \mathbf{e}_n + \left(v^3 \kappa \tau\right) \mathbf{e}_b. \tag{6}$$

Give an example from roller coasters illustrating the role played by $\frac{ds}{ds}$ in this expression.

(d) (5 Points) A circular helix has a curvature $\kappa = \frac{1}{R_0(1+\alpha^2)}$ and a torsion $\tau = \kappa \alpha$. For a particle moving on this helix subject to a gravitational force $-mg\mathbf{E}_3$, it can be shown that

$$\dot{v} = -gR_0\tau. \qquad (7)$$

Show that the magnitude of the jerk of the moving particle is always non-zero. Using this result, infer that the jerk of a particle moving at constant speed on a circle of radius R_0 is $-\frac{v^3}{R_0^2}\mathbf{e}_t$.

A Particle under the Influence of a Conservative Force 35 Points

A particle of mass m is free to move in space and is subject to a single conservative force. The potential energy of the force P is

$$U = -\frac{\beta}{\|\mathbf{r}\|} - \frac{\gamma}{\|\mathbf{r}\|^3} + \frac{1}{2}K(\|\mathbf{r}\| - L)^2, \quad (8)$$

where $\beta > 0$, γ , K > 0 and $L \ge 0$ are constants. In this expression, the position vector of the particle relative to a fixed origin O is \mathbf{r} .

(a) (5 Points) With the help of a spherical polar coordinate system, show that

$$\nabla \|\mathbf{r}\| = \frac{\mathbf{r}}{\|\mathbf{r}\|}$$
 (9)

(b) (5 Points) Show that the force acting on the particle is

$$\mathbf{P} = -\left(\frac{\beta}{\|\mathbf{r}\|^2} + \frac{3\gamma}{\|\mathbf{r}\|^4} + K(\|\mathbf{r}\| - L)\right) \frac{\mathbf{r}}{\|\mathbf{r}\|}.$$
 (10)

(c) (5 Points) Show that the angular momentum H_O of the particle can be expressed as

$$\mathbf{H}_{O} = mR^{2} \left(\dot{\phi} \mathbf{e}_{\theta} - \dot{\theta} \sin(\phi) \mathbf{e}_{\phi} \right). \tag{11}$$

- (d) (5 Points) With the help of (12), establish the three differential equations governing the motion of the particle.
- (e) (5 Points) Prove that any solutions to the differential equations you established in (d) conserve the total energy E and the angular momentum H_O of the particle.
- (f) (5 Points) Given a set of initial conditions $\mathbf{r}(t_0)$ and $\mathbf{v}(t_0)$ for the motion of the particle, why is the particle's motion confined to a plane?
- (g) (5 Points) Using the results of (d) and (f), establish a quintic equation for the radius of a possible circular orbit of the particle about O.

Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates $\{R, \phi, \theta\}$ are defined using Cartesian coordinates $\{x = x_1, y = x_2, z = x_3\}$ by the relations:

$$R = \sqrt{x_1^2 + x_2^2 + x_3^2} \,, \quad \theta = \arctan\left(\frac{x_2}{x_1}\right) \,, \quad \phi = \arctan\left(\frac{\sqrt{x_1^2 + x_2^2}}{x_3}\right) \,. \label{eq:Rate}$$

In addition, it is convenient to define the following orthonormal basis vectors:

$$\begin{bmatrix} \mathbf{e}_R \\ \mathbf{e}_{\phi} \\ \mathbf{e}_{\theta} \end{bmatrix} = \begin{bmatrix} \cos(\theta)\sin(\phi) & \sin(\theta)\sin(\phi) & \cos(\phi) \\ \cos(\theta)\cos(\phi) & \sin(\theta)\cos(\phi) & -\sin(\phi) \\ -\sin(\theta) & \cos(\theta) & 0 \end{bmatrix} \begin{bmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \\ \mathbf{E}_3 \end{bmatrix}.$$

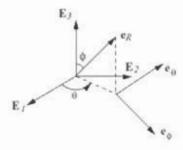


Figure 1: Spherical polar coordinates

For a particle of mass m which is unconstrained, the linear momentum G, kinetic energy T, and acceleration vector \mathbf{a} of the particle are

$$G = m\dot{R}\mathbf{e}_R + mR\dot{\phi}\mathbf{e}_{\phi} + mR\sin(\phi)\dot{\theta}\mathbf{e}_{\theta},$$

$$T = \frac{m}{2}\left(\dot{R}^2 + R^2\dot{\phi}^2 + R^2\sin^2(\phi)\dot{\theta}^2\right),$$

$$\mathbf{a} = (\ddot{R} - R\dot{\phi}^2 - R\sin^2(\phi)\dot{\theta}^2)\mathbf{e}_R + (R\dot{\phi} + 2\dot{R}\dot{\phi} - R\sin(\phi)\cos(\phi)\dot{\theta}^2)\mathbf{e}_{\phi}$$

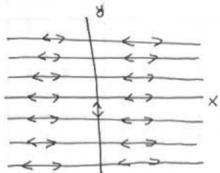
$$+ (R\sin(\phi)\ddot{\theta} + 2\dot{R}\dot{\theta}\sin(\phi) + 2R\dot{\theta}\dot{\phi}\cos(\phi))\mathbf{e}_{\theta}.$$
(12)

(a) $x \in x \cdot y = 0$ $\Rightarrow 0$ $\Rightarrow 0$ $\Rightarrow 0$ Suppose $y \in x$ such that $\frac{\partial y}{\partial y} = x$ $\frac{\partial y}{\partial x} = 0$, and $\frac{\partial y}{\partial z} = 0$, then $\frac{\partial^2 y}{\partial x \partial y} = 1$ but $\frac{\partial^2 y}{\partial y \partial x} = 0$. Hence, the

construct ZEL. V is non-integrable

The constraint $E_3. V=0$ is complete to $\dot{z}=0$. This complete to the integrable answer $\dot{\psi}=z-z_0=0$, where z_0 is a constant.

We choose $z_0 = 0$. Hence the policie never on a plane $z = z_0 = 0$, and its mention is subject to the constraint xy = 0. Graphically the possible paths of the porticle are shown below



X B

Sample poth from A &B.

on the 2=0 place, the public con move on the lunes y = constant. The public con transition to any of these lunes by first moving onto the se = 0 lune (y-axis).

(c)
$$x\underline{E}_{1}.\underline{V}=0 \implies \underline{F}_{c}=\lambda_{1}\times\underline{E}_{2}$$

$$\underline{F}_{c}=\lambda_{1}\times\underline{E}_{1}$$

$$\underline{F}_{c}=\lambda_{1}\times\underline{E}_{1}+\lambda_{1}\underline{E}_{2}$$

(d)
$$F = ma$$
. $\Rightarrow D$ $m\ddot{x} = D$ $m\ddot{y} = \lambda_1 \infty$ $m\ddot{z} = \lambda_2 - mg$

Constraints $z = z = z = 0$ $x\dot{y} = 0$

Soln:
$$x(t) = \dot{x}(0)t + x(0)$$

$$y(t) = y(0) \text{ or when } x = 0 \text{ } y(t) = y(0) + \dot{y}(0) t$$

$$z(t) = z_0 = z(0)$$

(b)
$$K = K(S)$$
 $\dot{K} = \frac{dK}{ds} \frac{dS}{dt} = V \frac{dK}{ds}$

$$\dot{\nabla} = \dot{\nabla} =$$

UEt + UEt + KV2en + ZKVVen + KV2en

In roller country for a loop-the-loop dk should be so smoothly voying function of S.

For

which is a primitive loop-the-loop dx is not defined at *

For a posside on a helix: V = -988

and
$$\frac{dK}{dS} = 0$$

Hence

As K70, T70, if the pulicle is noving 11911 + 0

For a publicle on a circle
$$K = \frac{1}{R0}$$
 and $T = 0$

$$\underline{\dot{Q}} = -K^{2}V^{3}\underline{\underline{Q}}e = -\frac{V^{3}}{R_{0}^{2}}\underline{\underline{Q}}e$$
.

(a)
$$||C|| = R$$
, $C = RR$

$$\nabla R = \frac{\partial R}{\partial R} R = RR = ||C||^{-1} C$$

(b)
$$U = -\frac{\beta}{R} + \frac{\delta}{R^3} + \frac{1}{2} K(R-L)^2$$

$$P = -\frac{\partial u}{\partial R} \mathbb{C} R = -\left(\frac{\beta}{R^2} + \frac{3\delta}{R^4} + K(R-L)\right) \mathbb{C} R$$

$$= -\left(\frac{\beta}{\|\Gamma\|^2} + \frac{3\delta}{\|\Gamma\|^4} + K(\|\Gamma\|-L)\right) \mathbb{C} R = P \mathbb{C} R$$

(c)
$$H_0 = \int x my = R \mathcal{E}_R \times m \left(\dot{R} \mathcal{E}_R + R \dot{\theta} S in \varphi \mathcal{E}_B + R \dot{\varphi} \mathcal{E}_A \right)$$

$$= mR^2 \dot{\theta} S in \varphi \mathcal{E}_R \times \mathcal{E}_B + mR^2 \dot{\varphi} \mathcal{E}_{R} \times \mathcal{E}_B \qquad \mathcal{E}_A$$

$$= mR^4 \left(\dot{\varphi} \mathcal{E}_B - \dot{\theta} S in \varphi \mathcal{E}_A \right)$$

(d)
$$\underbrace{F = ma}_{\text{en}} \cdot en \qquad m\left(R - R\dot{\phi}^2 - R\sin^2\phi\dot{\phi}^2\right) = P \\ \cdot e\phi \qquad m\left(R\ddot{\phi} + 2\dot{R}\dot{\phi} - R\sin\phi\cos\phi\dot{\phi}^2\right) = O \\ \cdot e\phi \qquad m\left(R\sin\phi\ddot{\phi} + 2R\dot{\phi}\sin\phi + 2R\dot{\phi}\dot{\phi}\cos\phi\right) = O$$

(a) Energy Conservation
$$\dot{T} = F. y = \frac{9}{2}. y = -\frac{3u}{3\Gamma}. y = -\dot{u}$$

Define $E = T + \dot{u}$, Hence $\dot{E} = \dot{T} + \dot{u} = \dot{T} - \dot{T} = 0 \implies \text{Energy is Conserved}$

Hence \dot{H}_0 is conserved.

- (5) Given I(to) and V(to), Ho = ho is defined. As ho is constant = MIXY
 I and V must lie in a place containing O. Honce the motion of the particle is planer.
- (9) We choose stop such that $\phi = \frac{\pi}{2}$. This is possible because the motion is polaric.

 In this case the earnotron of motion simplify to.

$$\frac{d}{dt}(mR^2\dot{\theta}) = 0$$
 \Rightarrow $mR^2\dot{\theta} = h$ $(= H_0.E_9)$

$$m\ddot{R} - mR \left(\frac{h}{mR^2}\right)^2 = P$$

and if we subshille for P

$$m\ddot{R} - \frac{h^2}{mR^3} = -\left(\frac{\beta}{R^2} + \frac{38}{R^4} + K(R-L)\right)$$

For circular motion R = 0. Hence,

$$\beta R^2 + 38 + \kappa (R-L)R^4 - \frac{h^2 R}{m} = 0$$

This is a auntic equation for R = Ro, which is the radio of the circular orbit. There may be more than one red possible root to this equation.