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Answer All Three Questions

Question 1
A Particle Subject to Two Constraints
20 Points

Suppose that the motion of a particle 18 subject to the [ollowing constraints:

(zEz}-v = 0,
(Ea) v = 0 (1

(a) (5 Points) Show that one of the constramts (1) is non-integrable. In addition,
for the integrable constraint, caleulate the function y{r, t) = 0.

(b) (& Points) Give a graphical interpretation of the effects of the constraints (1)
on the possible motions of a particle, Show in particular that the non-integrable
constraint does not place restrictions on where the particle can move but rather
liow it moves from one location to another,

(c) (& Pemnts) Give prescriptions for the constraint forees mssociated with the
constraints (1),

(d) {5 Points) Suppose that, in addition to the constraint forces, a gravitational
furce —mygEq acts on the particle. Using F = ma, determine the motion of the
particle and the constraint forces,



Question 2
A Particle Moving on a Curve
20 Ponts

Consider a smooth curve which is parameterized by its arc-length parameter s,
The position vector of a point on the curve is defined by r = r(2(t)). Associated
with this curve, we define the Serret-Frenet triad (e, e, 0}

dr ey
R = s

where « is the curvature of the space curve.

t = gt 8, = & X By, (2)
s

{a) (5 Puints) Given, that the torsion 7 and curvature are defined by the relations

_ de, dey, ’
hB, = E' TR, = Er (3)
show that
ey, .
— = — Ky + Te (4)
s

{b} (3 Ponts) For a particle moving on the space curve, show, with the help of
(2], that

e ) q
K=1—, v o= ey, A= uey + KUTE,, 5

s’

5]
Lt 41e

where v = &,

() (5 Poats) The time-derivative of acceleration, or jerk, is a measure of comfort.
Show that the jerk of the particle is

A= (il ~ x5y 3} e + (.imrv + v dT) e, + { “m} ey, (6)

Give an example [rom roller coasters illustrating the role played by E in this
SXPresslon,
(d) (5 Points) A circular helix has a curvature & = W and a torsion 7 = Ka.
For a particle moving on this helix subject 1o a gravitational force —mgEsy, it can
b shown that

= —gHyr. (7
Show that the magnitude of the jerk of the moving particle is always non-zero.
Using this result, infer Lhm. the jerk of a particle moving ot constant spead on a
circle of radins fy is 'l,—?-;E;



Question 3
A Particle under the Influence of a Conservative Force
35 Points

A particle of mass m is free to move in space and is subyject Lo o single conservative
force. The potential energy of Lthe force P s

a T | )

i e e SR ] =LK (8)
Irl  Ir* 2

where @ >0, v, K >0 and L > 0 are constants. In this expression, the position
vector of Lthe particle relative to a fixed origin @ is r.

U=—

{a) (5 Points) With the help of a spherical polar coordinate system, show that

r
Vic] = —. (4)
=
(b) {5 Punts) Show that the foree acting on the particle is
i 3y ; r
Pe=o ol f o K r—-L])—. (10)
(1 * e+ K 0100 1

() (5 Points) Show that the angular momentum Hg of the particle can be ex-
pressed as

Ho = mR? (des — dsin(g)e, ) . (11)

{d) {5 Pomnts) With the help of {12}, establish the three differential equations
governing the motion of the particle.

(e} (5 Points) Prove that any solutions to the differential equations you estab-
lished in (d) conserve the total energy E and the angular momentum Hg of the
particle,

{f) (5 Points) Given a set of initial conditions r (t) and v {ty) for the motion of
the particle, why is the particle’s motion confined to a plane?

(g) (5 Points) Using the results of {d) and (f), establish a quintic equation for
the radius of a possible circular orbit of the particle about O.



Notes on Spherical Polar Coordinates

Recall that the spherical polar coordinates { R, ¢, #} are defined using Cartesian
coordinates {x = 7.y = 73,2 = T2} by the relations:

(el + a3
“ﬂfm. H=ﬂ.rctan(-'r—?). - v_l_)

Ly

@ = arelan
| dy

In adeition, it is convenient Lo define Lhe following orthonormal basis vectors:

Tn] [mm]siu{m sin{#) sin(¢)  cos{o) '[EJ}
e, | = .

cos{f) cos(d)  sin(#) cos(d)  —sinfd)
— sin(#) cos( i) 0

By

Figure I Spherical polar coordinates

For a particle of mass m which is unconstrained, the linear momentum G, kinetic
energy T, and acceleration vector a of the particle are
G = mltey + mRbe, + mH sin(¢)fe,,
T = o (R + R + R sin(¢)°),
a = {}% ~ R¢? - Rsin®(¢)8)en + (Ré + 20¢ — Rsin(¢) cos(¢)0?)e,
+ (Rsin(e)f + 2RO sin{d) + 2RO cos(d))eq. (12)
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