1. (12 pts.) Short-answer questions

Translate each of the following claims into symbolic form. For instance, a good translation of “n is either at least three or at most five” would be “n ≥ 3 \land n ≤ 5.”

Then, state whether the claim is true or false, and briefly justify your answer.

(a) [3 pts.] There is some natural number whose square root is not a natural number.

(b) [4 pts.] For every natural number \(n \), one can find another natural number \(m \) that is strictly smaller than \(n \).

(c) [5 pts.] For each natural number \(k \) there is some lower bound \(\ell \) so that \(k^\ell \geq n! \) when \(n \geq \ell \).
2. (12 pts.) Reachability

In chess, a bishop can move diagonally in any of the four directions. Consider a 3×3 board, with a bishop initially placed at the location marked ‘B’ (see below). Prove that it can never reach the square marked ‘X’.

```
B

X
```
3. (16 pts.) Proof by induction

Let the sequence a_0, a_1, a_2, \ldots be defined by the recurrence relation

$$a_n = 2a_{n\lceil \frac{n}{2} \rceil} - a_{n\lceil \frac{n}{2} \rceil - 2}$$

for $n \geq 2$ and $a_0 = 1, a_1 = 2$.

Consider the following argument:

Theorem 1 $a_n \leq n + 2$ for all $n \geq 0$.

Proof: We use strong induction on n. The base cases $n = 0$ and $n = 1$ hold, since $a_0 = 1 \leq 0 + 2$ and $a_1 = 2 \leq 1 + 2$. Now if $a_i \leq i + 2$ for each $i = 0, 1, \ldots, n-1$, for some $n \geq 2$, then we have

$$a_n = 2a_{n\lceil \frac{n}{2} \rceil} - a_{n\lceil \frac{n}{2} \rceil - 2} \leq 2(n \lceil \frac{n}{2} \rceil + 2) - (n \lceil \frac{n}{2} \rceil - 2) \leq 2n + 2 \leq n + 2,$$

which shows that $a_n \leq n + 2$ holds for all $n \geq 0$. □

(a) [6 pts.] Critique the above proof.

(b) [10 pts.] Give a better proof of the theorem.
4. (10 pts.) Matchings

Recall that a matching on \(n \) boys and \(m \) girls is a pairing where each boy is married to exactly one girl and each girl is married to exactly one boy.

(c) [5 pts.] Let \(M \) be a stable matching on \(n \) boys and \(n \) girls where Alice is paired with Bob. Now Alice and Bob fly off the Bermuda on vacation. We are left with a matching, call it \(L \), on the remaining \(n-1 \) boys and \(n-1 \) girls according to who is still paired up. Is \(L \) guaranteed to be a stable matching, if \(M \) is stable? Prove your answer.

(d) [5 pts.] If \(M, M' \) are two matchings, let \(M \sqcup M' \) denote the configuration where each girl is married to the better of her two partners in \(M \) and \(M' \) (according to that girl’s preference list). Is \(M \sqcup M' \) guaranteed to be a matching? Prove your answer.
(Note that none of the matchings here are required to be stable.)

Finished! You’re done; this is the last page; there are no more questions.