CS61C, Fall 1997
 Midterm \#1

Problem \#1 (3 points)

Convert the eight-bit binary value 11110000 to:
(a) hexadecimal.
(b) decimal, interpreting it as a unsigned value.
(c) decimal, interpreting it as a twos complement signed value.

Problem \#2 (3 points)

Decode the following binary numbers as MIPS instructions and give the equivalent MIPS assembly language (MAL) statements.

address	value
0×40	10001100101101110000000000100100
0×44	00000010111001001011000000100011
0×48	0001111011000000111111111110000

Problem \#3 (2 points)

Why did the MIPS designers use PC-relative branch addressing (One sentance is enough!)

Problem \#4 (4 points)

Consider this C struct definition:

```
struct foo {
    int *p;
    int a[3];
    struct foo *sf;
```

\} baz;

Suppose that register $\$ 16$ contains the address of baz.
For each of the following C statements, indicate which of the MAL code fragments below (A-H) could be the result of compiling it.

codeA:	lw	$\$ 8$,	$0(\$ 16)$
	sw	$\$ 8$,	$4(\$ 16)$
codeB: $:$	lw	$\$ 8$,	$0(\$ 16)$
	lw	$\$ 9$,	$0(\$ 8)$
	sw	$\$ 9$,	$4(\$ 16)$

codeC: lw $\$ 8,4(\$ 16)$
sw $\$ 8,0(\$ 16)$
codeD: sw $\$ 16,16(\$ 16)$
codeE: lw \$17, 6(\$16)
codeF: lw \$17, 12 (\$16)
codeG: lw $\$ 8,0(\$ 16)$
sw $\$ 8,16(\$ 16)$
codeH: addi $\$ 8, \$ 16,4$ sw $\quad \$ 8,0(\$ 16)$
\qquad number $=$ baz.a[2];
baz.p = baz.a;
baz.a[0] = *baz.p;
baz.sf = \&baz;

Problem \#5 (6 points)

Translate the following C procedure to MAL. Use the convention in which arguments are passed in registers.

```
int garply(int a, int *b) {
```

 int c;
 c = subt (a >> 6);
 b \(=\mathrm{a}+\mathrm{}_{\mathrm{b}}\);
 if \((a<)|\mid c<0)\)
 return c;
 else
 return c \({ }^{\text {a; }}\)
 \}

Problem \#6 (6 points)

Consider the following fragment of a $\mathrm{C} / \mathrm{C}++$ program.

```
int v[10], s;
int *p;
s = 17;
for (p = &v[3]; *p != 0; p++)
    s = s + *p;
```

Here is a buggy translation in MAL, assuming s is in $\$ 16$ and p is in $\$ 19$.

$$
\begin{array}{lll}
\text { or } & \$ 16, & \$ 0, \\
\text { lw } & \$ 19, & \mathrm{v}+12
\end{array}
$$

loop:

$$
\begin{array}{ll}
\text { bne } & \$ 8, \text { finish } \\
\text { add } & \$ 16, \$ 19, \$ 16 \\
\text { addi } & \$ 19,1
\end{array}
$$

```
    j loop
finish:
```

There are six errors, including one missing instruction, in this translation. Find and fix them.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

