Chemistry 112A, Midterm 1

Student name: Answer Aex
Student signature: \qquad
Write TA's full name (section number) or Lecture Only: \qquad

1. Please make sure that the exam has eight pages including this one.
2. Please write your answers in the spaces provided.
3. Write clearly; illegible or ambiguous answers will be considered incorrect.
4. Only writing implements are allowed (No Calculators).

GOOD LUCK!
1.
2.
3.

40 points
\qquad
50 points \qquad
\qquad
4.

13 points
5.

10 points
6.

10 points
\qquad
.

20 points
8.

20 points
Total
175 points

MINI-PERIODIC TABLE

I	II	III	IV	V	VI	VII	VIII
H							He
Li	Be	B	C	N	O	F	Ne
Na	Mg	Al	Si	P	S	Cl	Ar
K	Ca	Ga	Ge	As	Se	Br	Kr

1. Provide structures for the following chemical names (12 points)

2. Answer the following questions. Points will be taken off for incorrect answers (50 points).
(a). Circle the alkenes that are (Z) stereoisomers (6 points).

(b). Circle each alkene carbon that is a stereocenter (6 points).

(c). Circle the energy difference in $\mathrm{kcal} /$ mole between the gauche and anti forms of butane (5 points):
0.9
1.4
3.0
4.5
5.4
(d). Circle the correct statement(s) (5 points).
3. $1 \mathrm{~s}, 2 \mathrm{~s}$, and 3 s orbitals do not have any nodes
4. Conformational isomers have the same molecular formula.
5. π-bonds are cylindrically symmetric.
6. In concerted reactions all bonds are broken and formed at the same time.
7. The smaller the standard free energy of activation $\left(\Delta G^{\circ} \neq\right)$, the faster a reaction proceeds.
(e). Number the radicals according to stability ($1=$ most $\boldsymbol{s t a b l e}$) (5 points).

1

3

4

(f). Circle the compounds for which each atom has a filled valence shell (5 points):

BH_{3}

\oplus
NH_{4}
(g). Number the bonds shown from longest to shortest [1 = longest] (5 points).
HO-H
$\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$
5
3
$\mathrm{H}_{3} \mathrm{C}-\mathrm{SeH}$
I
$\mathrm{H}_{3} \mathrm{C}-\mathrm{OH}$
2
$\mathrm{H}_{3} \mathrm{C}-\mathrm{H}$
4
(h). Circle the Newman projections) that represent a lowest energy conformation for each compound being illustrated (8 points).

(i). Number the alkenes from most to least stable (1 = most) (5 points).

2

3

4
3. For each of the following reactions supply the missing starting materials, reagents, or major organic products in the space provided. If no reaction is expected indicate by N.R. (40 points total).
(a)

(b)

(c)

(d)

(e)

$$
\begin{aligned}
& \text { 1. } \mathrm{Hy}_{4}\left(\mathrm{OAC}_{2}\right)_{2}, \mathrm{H}_{2} \mathrm{O} \\
& \text { 2. } \mathrm{NaHH}_{4}, \mathrm{NaOH}
\end{aligned}
$$

(f)

$\mathrm{D}_{2}, \mathrm{Pt}$ (cat)

(g)

(h)

DCl

4a. Draw an energy diagram for the different conformations of the alkane shown below. The energy diagram should reflect the relative energy differences between the conformations, but exact energy differences do not need to be shown (8 points).

tb. Specify whether the three energy minima have one, two or three different energies (2 points)? three
4c. Provide a brief explanation of your answer above and circle the lowest energy minima (3 points). The Fluty group is bulkier than the methyl groups so the gauche
interaction at 180° is larger than the one at 300°. interaction at 180° is lager than the one at 300°.
5. Answer the questions for the reaction provided below.

Bond	$\mathbf{D H}^{\circ}(\mathbf{k c a l} /$ mole $)$
$(\pi$-bond $)$	65
$-(\sigma$-bond $)$	90
I-I	36
H-I	71
C-I	53
$\mathrm{C}-\mathrm{H}$	100

Sa. Calculate the $\Delta \mathrm{H}^{\circ}$ for the above transformation using the approximate DH° given above (8 points).

$$
\begin{aligned}
& =65+36-2(53) \Rightarrow \theta_{5}
\end{aligned}
$$

bb. Is the reaction endothermic or exothermic (2 points)?
exothermic

6a. Draw two additional resonance structures that are more significant contributors than the structure shown (5 points).

bb. Circle the major resonance contributor and briefly explain your answer (5 points). Oxygen is mote electronegative than carton, so θ chape on
oxygen is preferred. The tit resonmice strive is ty tars the worst due to charge separation.
7. Provide a mechanism for the reaction shown below (20 points).

8. Provide a mechanism for the reaction shown below (20 points).

