
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2001 Instructor: Dan Garcia 2001-02-26

CS 3 Midterm
#1

Personal Information

Last name

First Name

Student ID Number

Lab Section Time & Location you attend

All the work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others

in CS3 who have not taken it yet. (please sign)

Instructions
• Question 0 (worth 1 point) Please fill in the

front and write your name on every page!

• You have two hours to complete this quiz.

The quiz is open book and open notes, no
computers.

• Partial credit will be given for incomplete /
wrong answers, so please write down as
much of the solution as you can.

• You may always write auxiliary functions
for a problem unless they are specifically
prohibited in the question.

• Feel free to use any Scheme function that
was described in sections of the textbook
we have read without defining it yourself.
Do not use functions or constructs that we
have not covered, such as recursion.

• You do not need to write comments for
functions you write unless you think the
grader will not understand what you are
trying to do otherwise.

• Please comment on the exam on the right.
Rate its difficulty (0 = cake, 5 =
impossible), fairness (0 = unfair, 5 = fair),
and feel free to add any other comments
that come to mind.

Name: ______________________________________

Page 2 of 2

Grading Results

Question
Max.

Points
Points
Given

0 1

1 20

2 10

3 8

4 8

5 13

Total 60

Comments:

• Difficulty (0=easy, 5=hard):
• Fairness (0=unfair, 5=fair):
• Other thoughts?

Name: _____________________________________

Page 3 of 3

Question 1 : You’re in Big Momma’s house now… (20 points)

Your grandmother tells you that back in her day they didn’t have those fancy
computers to evaluate all of their computer programs for them. No, they
evaluated all of their programs themselves. Prove to your grandmother that you
could do the same if you had to. For each of the following Scheme expressions,
write the value that would be returned if we were to evaluate it in the Scheme
interpreter. Write your answers next to each expression in the space provided. If
an expression results in an error, just write the word ERROR and describe the
error in a few words. If the value of an expression is a procedure, just say
PROCEDURE. Assume that the following defines have already been made:

(define mantra ‘(cal is great))

(define (weird a b c) ‘(/ 100 a))

(define (mult-10 n) (word n 0))

CAUTION: These are quite subtle; make sure you go through them carefully.

(* (+ 2 (/ 7 1)
 (*)))

(equal? (quote (1)) (se (1)))

(if (= 1 ‘1) + -)

(if < 3 4)

(and (if #f #f #t)
 ‘a
 ‘(b)
 (not (= 1 2))
 mantra)

(bl (bf mantra))

(lambda () m a n ‘t ‘r ‘a)

(weird 0 1 2)

(every mult-10 ‘(weird 10 2 3)))

(accumulate - (every mult10 ‘(3 2 1)))

Name: ______________________________________

Page 4 of 4

Question 2 : My broker told me of this great (mutual) fun… (10 points)
Given the following definition:

(define mutual-fun
 (lambda (f g)
 (if (< (f 1)
 (g 1))
 f
 g)))

a) Describe, as precisely as possible, the domain and range of mutual-fun.
(6 points)

Domain Range

b) Below is an expression with a single call to mutual-fun with some parenthesis

and arguments missing. Fill in the missing parenthesis and arguments so that
the expression returns 2. (4 points)

 mutual-fun sqrt 4

Name: ______________________________________

Page 5 of 5

Question 3 : $35 for dinner, and nothing… (8 points)
 We’ve begun to write an error checking function, called bad-date? for the
case-study. It takes in a date, which is a sentence, and makes sure it is correctly
formatted. However, the function is incomplete, as it misses an important error.
We need you to fix it with an error check in the correct place in the cond.

• Fill in only one of the appropriate boxes below corresponding to the
missing error-check. Be sure to give a suitable return value (i.e., a self-
explanatory word) for the missing check.

• Use the appropriate selector functions as in the case study.

Here are examples of calls to bad-date? :

: (bad-date? ‘(january 5 1981)) è wrong-number-of-elements-in-date
: (bad-date? ‘(march fourth)) è day-is-not-an-integer
: (bad-date? ‘(dec 25)) è illegal-month-supplied
: (bad-date? ‘(february 26)) è #f

(define legal-month-names ‘(january february march april may june july august

 september october november december))))

(define (bad-date? date)

(cond ((not (= (count date) 2))
 ‘wrong-number-of-elements-in-date)

((not (integer? (day-in-month date)))
 ‘day-is-not-an-integer)

((not (member? (month-name date) legal-month-names))
 ‘illegal-month-supplied)

 (else #f)))

Name: ______________________________________

Page 6 of 6

Put down your pen or pencil, stretch, take a deep breath, and proceed…

Name: ______________________________________

Page 7 of 7

Question 4 : Waiter, there’s a bug in my function! (10 points)
Assume you want to sum up the squares of every number in a sentence. You write
the following procedure (formatted to make it easy to pinpoint bugs):

 (define (sum-of-squares sent)
 (accumulate
1 (lambda
2 (total newone)
3 (+
4 total
5 (* newone newone)))
6 sent))

a) Typing (sum-of-squares '(1 2 3)) gives you 122 when it should give you

1*1 + 2*2 + 3*3 = 14. You look at the code for a minute and say, “Ah!” and
make a small change. The next time, (sum-of-squares '(1 2 3)) gives you 8. Fill
in the blanks below to specify the change you must have made. (4 points)

Replacing line # _____,

with _____________________________________

would cause (sum-of-squares '(1 2 3)) to return 8 instead of 122.

b) Since 8 still isn't the answer you want, you make another change. This time,
sum-of-squares works, and returns 14 when given the sentence (1 2 3). What
did you change? Fill in the blanks below to specify the change you must have
made. (4 points)

Replacing line # _____,

with _____________________________________

would cause (sum-of-squares '(1 2 3)) to correctly return 14 instead of 8.

Name: ______________________________________

Page 8 of 8

Question 5 : Magical mystery function, step right this way… (13 points)
Let's say that we have the following two definitions:

(define (add-one x)
 (+ x 1))

(define (mystery L)
 (se 1 (every add-one L)))

a) What does (mystery '()) evaluate to? (1 point)

b) What does (mystery (mystery '())) evaluate to? (2 points)

c) Write a function, 1-to-b, that takes a positive integer b, and returns a

sentence of numbers from 1 to b, inclusive. (5 points) Here are sample
calls:

: (1-to-b 1) è (1)
: (1-to-b 10) è (1 2 3 4 5 6 7 8 9 10)

d) Write a function, a-to-b, that takes positive integers a and b, returns a
sentence of numbers from a to b, inclusive. You may assume (<= 1 a b).
You should call 1-to-b in your solution, and you shouldn’t use any function
you called in the body of 1-to-b above. (5 points) Here are sample calls:

: (a-to-b 7 7) è (7)
: (a-to-b 7 10) è (7 8 9 10)

