Problem 1

A 25-kg piston is required to travel a specific distance within the piston-cylinder arrangement shown in the figure below. The piston, whose area is $0.0050 \mathrm{~m}^{2}$, is initially at rest at the lower stops. Air within the cylinder is heated until the piston touches the upper stops. The initial pressure and temperature of the air are 101 kPa and $20^{\circ} \mathrm{C}, g=9.80$ $\mathrm{m} / \mathrm{s}^{2}$, and $P_{a t m}=101 \mathrm{kPa}$. Determine the work done and the heat transfer during this process. The air may be considered as an ideal gas with constant specific heat, $c_{v}=0.72$ kJ/kgK.

Problem 2

A tank with a volume of $0.5 \mathrm{~m}^{3}$ contains saturated water at $300^{\circ} \mathrm{C}$. The vessel initially contains 50% (by volume) of liquid. Liquid is slowly withdrawn from the bottom of the tank, so that the contents are kept at constant temperature. Find how much heat must be added till the removal of half of the initial mass.

Problem 3

At steady state, a well-insulated steam turbine develops $10,000 \mathrm{~kW}$ of power for a steamflow rate of $10 \mathrm{~kg} / \mathrm{s}$. The steam enters at 5 MPa and leaves at 5 kPa with a quality of 90%. Kinetic and potential energy contributions may be neglected. What is the inlet temperature of the steam in ${ }^{\circ} \mathrm{C}$?

