Statics (E36)

Final Examination

Problem 1. (20 points)

Draw the shear and moment diagrams for the beams shown in Figure 1:

- (A) $w_0 = 10N/m$, a = 1.0m:
- (a1) Find the reactions, (a2) Find the expressions for V(x) and Draw the shear diagram, and (a3) Find the expressions for M(x) and Draw the moment diagram;
- (B) M = 10 N-m and L = 5m.:
- (b1) Find the reactions, (b2) Find the expressions for V(x) and Draw the shear diagram, and (b3) Find the expressions for M(x) and Draw the moment diagram.

Hints:

$$\frac{dV}{dx} = -w(x)$$
, and $\frac{dM}{dx} = V(x)$.

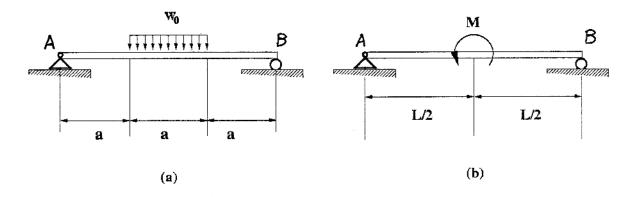


Figure 1: A simply supported beam with different load conditions

Problem 2. (15 points)

(1) Find the centroid of the cross-section shown in Figure 2 and set up the centroidal axes.

$$\bar{y} = \frac{\sum_{i} \bar{y}_{i} A_{i}}{\sum A_{i}}$$

(2) Find I_x with respect to the global centroidal axes.

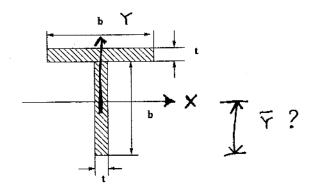


Figure 2: The cross section of a T-beam

Hints:

$$I_x = \int_A y^2 dA, \quad I_y = \int_A x^2 dA \tag{1}$$

$$I_x = (I_x)_c + d^2 A, \quad \Leftarrow \quad \text{Parallel Axis Theorem}$$
 (2)

$$I_{rectangular} = \frac{bh^3}{12} \iff \text{(The genetic formula for local centroidal axis)}$$
 (3)

Problem 3 (15 points)

A 2.4-m-long boom is held by a ball-and-socket joint at C and by two cables AD and BE. An external load W = -880j is acting at point A. Determine the tension in each cable and the reaction at the point C.

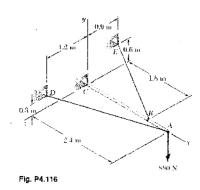


Figure 3: A three-dimensional structure

- (a) Draw free-body diagram for bar AC;
- (b) Write down the vector expressions for \mathbf{r}_A , \mathbf{r}_B , $\mathbf{r}_{AD} = \mathbf{r}_D \mathbf{r}_A$, and $\mathbf{r}_{BE} = \mathbf{r}_E \mathbf{r}_B$;
- (c) Find the forces in the vector form, \mathbf{W} , \mathbf{T}_{AD} , and \mathbf{T}_{BE} ;

(d) Write the vector form moment equilibrium equation,

$$\sum \mathbf{M}_C = \sum_i \mathbf{r}_{ic} \times \mathbf{F}_i = 0$$

and find T_{AD} and T_{BE} ;

(f) Write the vector form force equilibrium equation

$$\sum_{i} \mathbf{F}_{i} = 0$$

and find C_x , C_y , and C_z

Hint:

$$\mathbf{r} imes \mathbf{F} = \left| egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ r_x & r_y & r_z \ F_x & F_y & F_z \end{array}
ight|$$

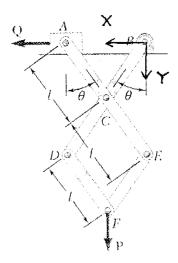


Fig. P10.50 and P10.51

Problem 4. (20 points)

Denoting by μ_s the coefficient of static friction between the block attached to rod ACE and the horizontal surface, derive expressions in terms of P, μ_s , and θ for the largest and smallest magnitudes of the force Q for which equilibrium is maintained.

- (a) Draw the free-body diagram for the whole system;
- (b) Find the ground support force A_y and the friction force acting on block A;
- (c) Find x_A , y_F and the virtual displacements δx_A and δy_F ;
- (d) Write down δU and let $\delta U = 0$ to find Q_{max} and Q_{min} ;

Figure 4: Friction and Virtual Work Method

Problem 5. (15 points)

- A floor truss is loaded as shown. Determine the forces in members FI, HI, and HJ.
- (1) Find the reactions at the point A and the point K;
- (2) Use method of section making a cut, draw the free-body diagram of the remaining substructure, and then solve for internal forces F_{FI} , F_{HI} , and F_{HJ} .

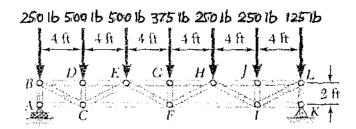
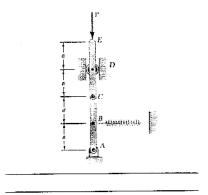
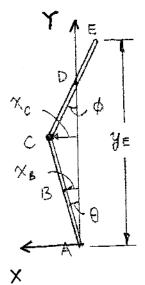


Figure 5: A Truss System with External Loads.



SOLUTION



Problem 6. (15 points)

Bar AC is attached to a hinge at A and to a spring at the point B. The spring constant is k, and it is undeformed when the bar is vertical. Find the range of values of P for which the equilibrium of the system is stable at shown the position $\theta = 0$.

- (a) Find x_c in terms of θ and ϕ and find the relationship between θ and ϕ when θ , $\phi << 1$;
- (b) Find x_B and y_E and write down the potential function for the system in terms of θ , P, k and a;
- (2) Show that $\theta = 0$ is an equilibrium position by using the equilibrium condition

$$\frac{dV}{d\theta} = 0$$
;

(3) Find the range of values of P such that the equilibrium at $\theta=0$ is stable $\frac{d^2V}{d\theta^2}>0$.

Figure 6: Equilibrium of a two-bar system.