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CS 170, Fall 1999 
Midterm 1 

1. (15 points) We are running one of these three algorithms on the graph below, where the algorithm has 
already "processed" the bold-face edges. (Ignore the directions on the edges for Prim's and Kruskal's 
algorithms.) 
 

●     Prim's for the minimum spanning tree, starting from S. 
●     Kruskal's for the minimum spanning tree. 
●     Dijkstra's for shortest path from S. 

  
Which two edges would be added next in Prim's algorithm? Be sure to indicate the order in which they 
are added. 
Answer: First (A,B) is added and then (C,F). 
 
 
Which two edges would be added next in Kruskal's algorithm? Be sure to indicate the order in which 
they are added. 
Answer: First (F,G) is added and then (A,B). 
 
 
At this point in the running of Dijkstra's algorithm, S has been taken off the top of the heap and marked. 
Which four vertices would be marked next in Dijkstra's algorithm, i.e. deleted from the top of the heap? 
Be sure to indicate the order in which they are deleted. Which final edges would Dijkstra's algorithm 
choose as part of the shortest path to these vertices (i.e. which edge connects to this vertex as part of the 
shortest path from S)? 
Answer: (1) C is marked, with edge (S,C). (2) A is marked, with edge (S,A).  
(3) D is marked with edge (S,D). (4) F is marked with edge (C, F).  
 
 
2. (25 points) Let G = (V, E) be a directed graph where every edge E has weight w(E), which may be 
positive, negative, or zero. The benefit of a path consisting of edges E1,E2,...Ek is defined as min( w(Ei) 
for 1<=i<=k ). 
Give an algorithm which computes the maximum benefit path from a given vertex s to another vertex f. 
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For example, if there are two paths from s to f, where Path 1 has edge weights -1, -2, -3 and Path 2 has 
edges weights -4, 10, 20, then Path 1 has benefit -3 and Path 2 has benefit -4, so Path 1 has the 
maximum benefit: -3 = max(-3, -4). Your algorithm should be as efficient as possible. 
 
A. Brief description or pseudocode. 
Answer: Identical to Dijkstra, except that for each vertex v we maintain the array W(v), which is the min 
of the weights w(E) on the highest benefit path found so far leading to v. Also we delete the heap entry 
with the maximum value of W(v). The algorithm is 
 

     array W, prev;heap H
     for each v that exists in V
         W[v] = -infinity; prev[v] = nil
     W[s] = 0
     insert(s, H)
     while H not empty
         v = deletemax(H), mark v
         for all edges E = (v, w)
             if w unmarked and W[w] < min(W[v], w(E)) then
                 W[w] = min(W[v], w(E)); prev[w] = v, insert(w,H)
             endif
         end for
     endwhile

 
 
B. Justification of correctness. 
Answer: Nearly identical to Dijkstra. First W[v] is always a lower bound on the benefit of the highest 
benefit path to v, by construction. Making a path longer can only decrease its benefit, so the induction 
proof that W[v] is the benefit of the best path in the graph examined so far still holds: When v is 
vmarked any vertex to which there is a path with a larger benefit has already been explored. Therefore 
v's maximum benefit path cannot increase after it is marked. 
 
C. Running time and justification. You may refer to analyses done in class without proof. 
Answer: Identical to Dijkstra: O(E log n) 
 
 
3. (25 points) A directed graph G = (V,E) is semiconnected if for every pair of distinct vertices u, and v, 
there is either a path from u to v or a path from v to u, or both (u and v lie on a cycle). Show that G is 
semiconnected if and only if the DAG formed by its strongly connected components has a unique 

topologically sorted order, i.e. there is a unique way to order the DAG vertices v1,v2,...,vn such that 

any edge(vi, vj) satisfies i < j. 
Answer: Let G' be the DAG of SCCs of G. From Homework 3, problem 5 (CLR 23.5-7) G is 

semiconnected if and only if G' has the following property: If vi,vi+1 are consecutive verticies in a 
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topological sort of G', then edge (vi, vi+1) exists in G'. 
Now assume that G is semiconnected. Then G' has the above property. Then there can only be one 

topologically sorted order, since reordering any vertices creates an edge from vj to vk with j > k. 

Now assume the topological ordering of G' is unique. Then for any pair of vertices vi and vi+1, we 

cannot reverse their order. This can only be the case is there is an edge (vi, vi+1) for all i. Hence G is 
semiconnected, by the above property. 
 
 
4. (15 points) 
True or false? No explanation required, except for partial credit. Each correct answer is worth 1.5 
points, but 1.5 points will be subtracted for each wrong answer, so answer only if you are reasonably 
certain. 

(a) n^(2+sin n) = O(n^2)  
Answer: False, because 2 + sin n is larger than 2.5, say for infinitely many values of n

(b) Dijkstra's algorithm can fail if there are zero edge weights along with positive ones. 
Answer: False. The inductive hypothesis can still be proven, since it only requires that making a 
path longer does not decrease its total weight.

(c) Let G be an undirected, weighted graph. Running an MST algorithm on each biconnected 
component of G, and then adding the bridge edges to the set of MSTs of each biconnected 
component, results in a combined MST for the whole graph. 
Answer: True, since an MST of G must connect to the articulation points, and there's no reason an 
MST algoriithm would be affected by not knowing that there was something on the other side of the 
articulation point, since it must connect to it on both sides anyway to be connected.

(d) Let G=(N,E) be an undirected graph. Let N=(N1 union N2) be a partition of N into nonempty 
disjoint subsets, and Gi the graph consisting of Ni, and all edges from E with both endpoints in Ni. 
Let Ti be an MST of Gi. Then one can construct an MST T of G by connecting T1 and T2 by the 
shortest edge connecting N1 and N2. 
Answer: False. Let N1 = {b}, N2 = {a, c}, and E = {(a,c),(a,b),(b,c)}, with w(a,c) = 5, w(a,b) = 3, 
and w(b,c)=1

(e) , if r > 0 and s > 0. 
Answer: True, as shown by the two inequalities 
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(f) If we add a directed edge to a directed graph with s strongly connected components, the number of 
strongly connected components in the new graph can equal any number between 1 and s, but cannot 
exceed s. 
Answer: True. Adding an edge can only create cycles, and so possibly decrease the number of 
SCCs. Add a single back edge to a chain of length s to see how to decrease the number of SCC by 
any desired number.

(g)  

Answer: True, by induction.

(h) Run DFS on a directed graph G computing visit times pre(v) and post(v) for each vertex v. An edge
(u,v) is a backedge if and only if pre(v) < pre(u) < post(u) < post(v). 
Answer: True. For (u,v) to be a backedge, u must be a descendant of v. u is a descendant of v if and 
only if DFS first visits v, then u, then returns from visiting u and then returns from visiting v, i.e. pre
(v) < pre(u) < post(u) < post(v).

(i) Adding one edge to a DAG must create a cycle. 
Answer: False, adding any forward edge will not create a cycle.

(j) You filled in your name, your TA's name, and your key on the first page of this exam.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) 
University of California at Berkeley 

If you have any questions about these online exams 
please contact mailto:examfile@hkn.eecs.berkeley.edu
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