
CS 170, Midterm #2, Fall 1999, SOLUTIONS

CS 170, Fall 1999
Midterm 2 with Solutions

Professor Demmel

Problem #1

1) (15 points) The following is a forest formed after some number of UNIONs and FINDs, starting with
the disjoint sets A,B,C,D, E, F, G, H, and I. Both union-by-rank and path compression were used.

(a) Starting with the forest above, we now call the following routines in order:
FIND(B), UNION (G,H), UNION (A,G), UNION (E,I)
Draw the resulting forest, using both union-by-rank and path compression. In case of tie during
UNION, assume that UNION will put the lexicographically first letter as root:
Answer:

(b) Starting with the disjoint sets A, B, C, D, E, F, G, H, and I, give a sequence of UNIONs and FINDs
that results in the forest shown at the top of the page. In case of a tie during union, assume that UNION
will put the lexicographically first letter as a root.
Answer: One solution is
UNION (F,G), UNION (A,C), UNION (B,E), UNION (B,D), UNION (D,A)

file:///C|/Documents%20and%20Settings/Jason%20Raft...-%20Fall%201999%20-%20Demmel%20-%20Midterm%202.htm (1 of 4)1/27/2007 5:30:44 PM

CS 170, Midterm #2, Fall 1999, SOLUTIONS

Problem #2

2) (25 points) Let p(x) = SUM_FROM_i=0_to_n (p_sub_i*x^i) and q(x) = SUM_FROM_i=0_to_m
(q_sub_i*x^i) be polynomials of degrees n and m, respectively, where n and m can be any integers such
that n>=m.

(a) Give an algorithm using the FFT that computes the coefficients of r(x) = p(x)_DOT_q(x). How
many arithmetic operations does it perform, as a function of m and n? Your answer can use O()
notation.

Answer: (1) Round up n+m+1 to the nearest power of 2, ie find the smallest k such that 2^k>=n+m+1:
k = CEILING_OF(LOGbase2(n + m + 1)). (2) Pad the vectors [p_sub_0,...,p_sub_n] and [q_sub_0,...,
q_sub_n] with enough zeroes to make vectors p_prime and q_prime of length 2^k. (3) Compute p_hat
= FFT(p+prime) and q_hat = FFT (q_prime). The cost is 3*k*2^k complex operations, or 10*k*2^k
real operations. (4) Multiply (r_hat)_sub_i = ((p_hat)_sub_i)* ((q_hat)_sub_i)for i = 0,, (2^k)-1. The
cost is 2^k complex operations, or 6*(2^k) real operations. (5) Compute r_prime = invFFT(r_hat) and
extract the leading n+m+1 entries. The cost is 1.5*k*2^k complex operations or 5*k*2^k real
operations.
The total cost is (4.5k + 1)2^k complex arithmetic operations, or (15k+6)2^k real arithmetic operations,
or more simply O(n*log n) operations.

(b) Give an algorithm NOT using the FFT that computes the coefficients of r(x) = p(x)DOTq(x). How
many arithmetic operations does it perfrom as a function of m and n?
Answer: For j = 0 to m+n compute r_sub_j = SUM_FROM_i=(max(0,j-m))_to_(min(j,n))
[p_sub_i*q_sub_j-i]. The cost is about 2mn complex operations, or 8mn real operations, or more
simply, O(mn) operations.

(c) Combine teh above algorithms to give the fastest possible algorithm depending on m and n. How
many arithmetic operations does it perform? Roughly how small (in a O() sense) does m have to be for
the non-FFT algorithm to be at least as fast as the FFT algorithm?
Answer: If (15k + 6)2^k <= 8mn use the FFT based algorithm, else the non-FFT based algorithm. Or
more roughly, if log_base2_of_n < m, then use the FFT based algorithm.)

Problem #3

file:///C|/Documents%20and%20Settings/Jason%20Raft...-%20Fall%201999%20-%20Demmel%20-%20Midterm%202.htm (2 of 4)1/27/2007 5:30:44 PM

CS 170, Midterm #2, Fall 1999, SOLUTIONS

3) (25 points) Given a set S = {s_sub_1, , s_sub_n} of n nonnegative intergers, and a positive
integer T, find a subset of S that adds up to T. Use dynamic programming; your solution should not
have a cost of growing like 2^n.
You should (1) Formulate your algorithm recursively (2) describe how it would be implemented in a
bottom-up iterative manner (3) give a cound on its running time in tersm of n and T and (4) give a short
justification of both the correctness of the algorithm and its running time.

Answer: Define AddUp(T_prime,i) to be True is a subset of {s_sub_1, , s_sub_n} adds up to
T_prime <= T, and False otherwise. Clearly AddUp(T_prime,1) = True if s_sub_1 = T_primt and False
otherwise, and for larger i AddUp(T_prime,i) = AddUp(T_prime,i-1) v AddUp(T_prime - s_sub_i,i-1).
AddUp can be computed by filling in a T-by-n table of all possible values of AddUp(T_prime,i) for
1<= T_prime <= T and 1<=i<=n, first filling in all values of AddUp(T_prime,1) and then AddUp
(T_prime,i) for i = 2 to n, at a cost of O(1) per table entry, and O(Tn) overall. Finally,one inspects
AddUp(T,n), which is true if and only if the problem can be solved. Another T-by-n table Set where Set
(T_prime, i) records which of AddUp(T_prime,i-1) or AddUp(T_prime - s_sub_i,i-1) is true (pick
arbitrarily if both are true) will let the actual set adding up to T be reconstructed.

Problem #4

4) (15 points) True or False?? No explanation required, except for partial credit. Each correct answer is
worth 1 point, but 1 point will be SUBTRACTED for each wrong answer, so answer only if you are
reasonably certain.

(a) If we can square a general n-by-n matrix in O(n^d) time, where d>=2, then we can multiply any two
n-by-n matrices in O(n^d) time
Answer: TRUE
(b) If the frequencies of the individual characters in a file are unique, the file's Huffman code is unqiue.
Answer: FALSE
(c) Huffman coding can compress any file
Answer: FALSE
(d) The solution to the recurrance T(n)=2T(n/2)+O(n*log_n) is T(n) = Theta(n(log_n)^2).
Answer: TRUE
(e) log* log_n = O(loglog* n)
Answer: FALSE
(f) In Union-Find (with union-by-rank and path compression), any union only takes O(log* n) time,
where n is the number of nodes.
Answer: FALSE
(g) In Union-Find data structure with union-by-rank but no path compression, m union and finds takes
O(m log m) time.
Answer: TRUE
(h) If the compression is not used, but union-by-rank is used, it is possible to arrange m LINK and
FIND operation so that is takes Omega(m log m) time.
Answer: TRUE
(i) If w is a complex n-th root of unity, then |w| = 1, where |w| is the absolute value of w.

file:///C|/Documents%20and%20Settings/Jason%20Raft...-%20Fall%201999%20-%20Demmel%20-%20Midterm%202.htm (3 of 4)1/27/2007 5:30:44 PM

CS 170, Midterm #2, Fall 1999, SOLUTIONS

Answer: TRUE
(j) If we want to ise FFT to multiply two polynomials of degree n = 2^m, we need to run the FF on
vectors of length 2n.
Answer: FALSE
(k) The value of a degree n polynomials at n+2 distinct points determines its coefficients uniquely.
Answer: TRUE
(l) To find a optimal way to multiply 6 matrices A1*A2*...*A6, we can find an optimal way to multiply
A1*A2*A3, and to multiply A4*A5*A6, and combine the result.
Answer: FALSE
(m) Floyd-Warhsall algorithm works with negative edge weights when there are no neagtive cycles.
Answer: TRUE
(n) Floyd-Warshall algorithm is always asymptotically faster than running Dijkstra n times, where n is
te number of vertices
Answer: FALSE
(o) You wrote your name and your TA's name on the first page

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact mailto:examfile@hkn.eecs.berkeley.edu

file:///C|/Documents%20and%20Settings/Jason%20Raft...-%20Fall%201999%20-%20Demmel%20-%20Midterm%202.htm (4 of 4)1/27/2007 5:30:44 PM

mailto:examfile@hkn.eecs.berkeley.edu

	Local Disk
	CS 170, Midterm #2, Fall 1999, SOLUTIONS

