CS 170, Fall 1999

Midterm 2 with Solutions Professor Demmel

Problem \#1

1) (15 points) The following is a forest formed after some number of UNIONs and FINDs, starting with the disjoint sets A,B,C,D, E, F, G, H, and I. Both union-by-rank and path compression were used.

(a) Starting with the forest above, we now call the following routines in order:

FIND(B), UNION (G,H), UNION (A,G), UNION (E,I)
Draw the resulting forest, using both union-by-rank and path compression. In case of tie during UNION, assume that UNION will put the lexicographically first letter as root:
Answer:

(b) Starting with the disjoint sets A, B, C, D, E, F, G, H, and I, give a sequence of UNIONs and FINDs that results in the forest shown at the top of the page. In case of a tie during union, assume that UNION will put the lexicographically first letter as a root.
Answer: One solution is
UNION (F,G), UNION (A,C), UNION (B,E), UNION (B,D), UNION (D,A)

Problem \#2

2) (25 points) Let $p(x)=$ SUM_FROM_i=0_to_n (p_sub_i*x^i) and $q(x)=$ SUM_FROM_i=0_to_m (q_sub_i*x^i) be polynomials of degrees n and m, respectively, where n and m can be any integers such that $\mathrm{n}>=\mathrm{m}$.
(a) Give an algorithm using the FFT that computes the coefficients of $r(x)=p(x) _$DOT_ $q(x)$. How many arithmetic operations does it perform, as a function of m and n ? Your answer can use $O()$ notation.

Answer: (1) Round up $n+m+1$ to the nearest power of 2, ie find the smallest k such that $2^{\wedge} k>=n+m+1$: $\mathrm{k}=$ CEILING_OF(LOGbase2 $(\mathrm{n}+\mathrm{m}+1)$). (2) Pad the vectors [p_sub_0,...,p_sub_n] and [q_sub_0,..., q_sub_n] with enough zeroes to make vectors p_prime and q_prime of length 2^{\wedge} k. (3) Compute p_hat $=$ FFT(p+prime) and q_hat $=$ FFT (q_prime). The cost is $3 * \mathrm{k}^{*} 2^{\wedge} \mathrm{k}$ complex operations, or $10 * \mathrm{k}^{*} 2^{\wedge} \mathrm{k}$ real operations. (4) Multiply (r_hat)_sub_i $=\left(\left(p _h a t\right) _s u b _i\right)^{*}\left(\left(q_{_} h a t\right) _s u b _i\right)$ for $i=0, \ldots .,\left(2^{\wedge} k\right)-1$. The cost is $2^{\wedge} \mathrm{k}$ complex operations, or $6^{*}\left(2^{\wedge} \mathrm{k}\right)$ real operations. (5) Compute r_{-}prime $=$invFFT(r_hat) and extract the leading $\mathrm{n}+\mathrm{m}+1$ entries. The cost is $1.5 * \mathrm{k} * 2 \wedge \mathrm{k}$ complex operations or $5 * \mathrm{k} * 2^{\wedge} \mathrm{k}$ real operations.
The total cost is $(4.5 \mathrm{k}+1) 2^{\wedge} \mathrm{k}$ complex arithmetic operations, or $(15 \mathrm{k}+6) 2^{\wedge} \mathrm{k}$ real arithmetic operations, or more simply $\mathrm{O}\left(\mathrm{n}^{*} \log \mathrm{n}\right)$ operations.
(b) Give an algorithm NOT using the FFT that computes the coefficients of $r(x)=p(x) D O T q(x)$. How many arithmetic operations does it perfrom as a function of m and n ?
Answer: For $\mathbf{j}=0$ to $\mathrm{m}+\mathrm{n}$ compute r_{-}sub_j $=$SUM_FROM_i=(max($\left.(0, \mathrm{j}-\mathrm{m})\right)$ _to_(min(j,n)) [p_sub_i*q_sub_j-i]. The cost is about 2 mn complex operations, or 8 mn real operations, or more simply, $\mathrm{O}(\mathrm{mn})$ operations.
(c) Combine teh above algorithms to give the fastest possible algorithm depending on m and n. How many arithmetic operations does it perform? Roughly how small (in a O() sense) does m have to be for the non-FFT algorithm to be at least as fast as the FFT algorithm?
Answer: If $(15 \mathrm{k}+6) 2^{\wedge} \mathrm{k}<=8 \mathrm{mn}$ use the FFT based algorithm, else the non-FFT based algorithm. Or more roughly, if log_base2_of_n < m, then use the FFT based algorithm.)

Problem \#3

3) (25 points) Given a set $\mathrm{S}=\left\{\mathrm{s} _\right.$sub_1, , s_sub_n\} of n nonnegative intergers, and a positive integer T, find a subset of S that adds up to T. Use dynamic programming; your solution should not have a cost of growing like 2^{\wedge} n.
You should (1) Formulate your algorithm recursively (2) describe how it would be implemented in a bottom-up iterative manner (3) give a cound on its running time in tersm of n and T and (4) give a short justification of both the correctness of the algorithm and its running time.

Answer: Define AddUp(T_prime,i) to be True is a subset of $\left\{s_{-}\right.$sub_1, , s_sub_n\} adds up to T_prime <= T, and False otherwise. Clearly AddUp(T_prime,1) = True if s_sub_1 = T_primt and False otherwise, and for larger i $\operatorname{AddUp}\left(T _\right.$prime, i$)=\operatorname{AddUp}\left(T _p r i m e, i-1\right)$ v $\operatorname{AddUp}\left(T _p r i m e ~-~ s _s u b _i, i-1\right)$. AddUp can be computed by filling in a T-by-n table of all possible values of AddUp(T_prime,i) for $1<=\mathrm{T}$ _prime $<=\mathrm{T}$ and $1<=\mathrm{i}<=\mathrm{n}$, first filling in all values of AddUp(T_prime, 1) and then AddUp (T_prime, i) for $\mathrm{i}=2$ to n , at a cost of $\mathrm{O}(1)$ per table entry, and $\mathrm{O}(\mathrm{Tn})$ overall. Finally, one inspects $\operatorname{AddUp}(T, n)$, which is true if and only if the problem can be solved. Another T-by-n table Set where Set (T_prime, i) records which of $\operatorname{AddUp}\left(T _p r i m e, i-1\right)$ or $\operatorname{AddUp}\left(T _\right.$prime - s_sub_i,i-1) is true (pick arbitrarily if both are true) will let the actual set adding up to T be reconstructed.

Problem \#4

4) (15 points) True or False?? No explanation required, except for partial credit. Each correct answer is worth 1 point, but 1 point will be SUBTRACTED for each wrong answer, so answer only if you are reasonably certain.
(a) If we can square a general n-by-n matrix in $\mathrm{O}\left(\mathrm{n}^{\wedge} \mathrm{d}\right)$ time, where $\mathrm{d}>=2$, then we can multiply any two n -by-n matrices in $\mathrm{O}\left(\mathrm{n}^{\wedge} \mathrm{d}\right)$ time

Answer: TRUE

(b) If the frequencies of the individual characters in a file are unique, the file's Huffman code is unqiue. Answer: FALSE
(c) Huffman coding can compress any file

Answer: FALSE
(d) The solution to the recurrance $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}\left(\mathrm{n} * \log _{\mathrm{n}} \mathrm{n}\right)$ is $\mathrm{T}(\mathrm{n})=\operatorname{Theta}\left(\mathrm{n}\left(\log _{\mathrm{n}} \mathrm{n}\right)^{\wedge} 2\right)$.

Answer: TRUE
(e) $\log ^{*} \log \mathrm{n}=\mathrm{O}(\log \log * \mathrm{n})$

Answer: FALSE
(f) In Union-Find (with union-by-rank and path compression), any union only takes $\mathrm{O}\left(\log ^{*} \mathrm{n}\right)$ time, where n is the number of nodes.
Answer: FALSE
(g) In Union-Find data structure with union-by-rank but no path compression, m union and finds takes $\mathrm{O}(\mathrm{m} \log \mathrm{m})$ time.
Answer: TRUE
(h) If the compression is not used, but union-by-rank is used, it is possible to arrange m LINK and FIND operation so that is takes Omega(m log m) time.
Answer: TRUE
(i) If w is a complex n-th root of unity, then $|w|=1$, where $|w|$ is the absolute value of w.

Answer: TRUE
(j) If we want to ise FFT to multiply two polynomials of degree $\mathrm{n}=2^{\wedge} \mathrm{m}$, we need to run the FF on vectors of length 2 n .
Answer: FALSE
(k) The value of a degree n polynomials at $\mathrm{n}+2$ distinct points determines its coefficients uniquely. Answer: TRUE
(1) To find a optimal way to multiply 6 matrices A1*A2*...*A6, we can find an optimal way to multiply $\mathrm{A} 1^{*} \mathrm{~A} 2 * \mathrm{~A} 3$, and to multiply $\mathrm{A} 4 * \mathrm{~A} 5 * \mathrm{~A} 6$, and combine the result.
Answer: FALSE
(m) Floyd-Warhsall algorithm works with negative edge weights when there are no neagtive cycles.

Answer: TRUE
(n) Floyd-Warshall algorithm is always asymptotically faster than running Dijkstra n times, where n is te number of vertices
Answer: FALSE
(o) You wrote your name and your TA's name on the first page

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

