CS 174 Spring 1996
 Midterm Exam 2
 Professor M. Blum

Problem \#1

MUFFLER MANIA (OR, TURNING 2-SIDED COINS INTO 3-SIDED COINS)

Allison, Barbara, and Cindy are walking in the field one day when they find a muffler. They decide that it most likely does not belong to anyone and that one of them should keep it. They need a way to decide who should keep the muffler. Each woman should have a probability of $1 / 3$ of keeping the muffler.
They only have a fair coin as a tool.
Allison proposes they toss the coin twice.
If it comes up HH , Allison wins.
If it comes up HT, Barbara wins.
If it comes up TH, Cindy wins.
If it comes up TT, it's a draw and they try again, repeatedly, until they get a winner.
a) Under Allison's scheme, what is the expected number of coin tosses?

Barbara has another scheme. She proposes using the coin to generate the digits of a rational number z between 0 and 1 written in base 2. For example, the coin tosses HTHTHTHHH would correspond to the number $\mathrm{z}=.101010111$.

Barbara recalls that the binary equvilants of $1 / 3$ and $2 / 3$ in base 2 are
$1 / 3=.01010101010101010101 \ldots$
$2 / 3=.10101010101010101010 \ldots$
(Note that $1 / 3+2 / 3=.11111111111 \ldots=1$.)
If $0<z<1 / 3$ then Allison wins. If $1 / 3<z<2 / 3$ then Barbara wins.
If $2 / 3<\mathrm{z}<1$ then Cindy wins.
b) What is the expected number of coin tosses under Barbara's scheme?
c) Which scheme requires the fewest expected number of coin tosses?

Problem \#2

POCKET CHANGE

Consider tossing a coin that has probability $p=1 / 20$ of Heads.
a) If you flip it $\mathrm{k}=5$ times, how many Heads do you expect?
(Use the definition of expectation.)
b) What is the probability that you get one or more Heads from the $\mathrm{k}=5$ coin flips?
c) Explain why it is that, for every probability p and positive integer k , the answer to part a) is always an upper-bound on the answer to part b). Or is it?

Problem \#3

WALKING WITH CONFIDENCE

In class, we considered random walks on undirected graphs. We found that in a graph with m edges and n nodes, the expected time to visit all nodes was $2 \mathrm{~m}(\mathrm{n}-1)$.
a) After how many steps can you be 50% sure you visited all nodes? " 50% sure" means that for the given graph, at least 50% of the walks (of that length) visit all nodes.
b) Repeat for $75 \%, 95 \%$, and 100%.

Problem \#4

YOU BET YOUR LIFE (COINS OR DICE?)

Connie tosses a fair coin n times. She wins if she gets a Head n times in a row.
Dick tosses an n -sided die n times. He wins if the n outcomes are all different.
Who has the best chance to win?
Answer the question for:
a) $\mathrm{n}=2$.
b) $n=6$.
c) $\mathrm{n}=\mathrm{oo}$.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams

please contact mailto:examfile@hkn.eecs.berkeley.edu

