ME109 - Heat Transfer
Midterm 1- Fall'00
Instructor: Prof. A. Majumdar
Oct. 18, 2000; 10:10 am - 11:30 am; Maximum Points $=40$

NOTE: This is an open book, open notes exam.

1. (a) In the Fourier law of heat conduction, the heat flux is written as $q^{\prime \prime}=-k \nabla T$, where ∇T is the temperature gradient and k is the thermal conductivity of the medium. What is the purpose of the negative sign on the right hand side? What law does it help to satisfy?
(b) A wall of a house is irradiated by sun light with a flux of $q_{r a d}^{\prime \prime}$ which is fully absorbed at the wall surface. Part of this heat flux conducts through the wall of thickness L and conductivity, k, and is transferred by convection to T_{o} with a convective coefficient h. The other part of the flux is transferred directly to the fluid at temperature T_{o} with a convective
 coefficient h. Show that the temperature, T_{1}, of the wall surface that is irradiated by sun light is given as $T_{1}=T_{o}+\frac{q_{r a d}^{\prime \prime}}{h}\left(\frac{B i+1}{B i+2}\right)$, where $B i=h L / k$.
(c) You have been asked to solve a 2-dimensional steady state heat conduction problem using numerical methods. Instead of a square mesh that one normally adopts, you decided to choose a hexagonal mesh as shown in the figure. Consider an internal node, T_{o}, as shown in the figure on the right. If the distance between the nodes is L, determine using energy balance, the algebraic equation for the nodal temperature T_{o}
 in terms of the all the surrounding nodal temperatures and for a heat generation rate of \dot{q} per unit volume.
2. As an engineer in a utility company, you are asked to evaluate the performance of an electrical fuse. Consider a very long cylindrical wire of radius, $r_{o}[\mathrm{~m}]$, made of a material of density, $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$, heat capacity, $C[\mathrm{~J} / \mathrm{kg}-\mathrm{K}]$, thermal conductivity, k $[\mathrm{W} / \mathrm{m}-\mathrm{K}]$, and electrical resistivity, β [$\Omega-\mathrm{m}]$. The wire is
 suspended in a fluid at temperature, T_{o}, such that the heat transfer coefficient is $h\left[\mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}\right]$. Initially, the wire is at temperature T_{o}, which is the fluid temperature. At $t=0$, a current starts to flow such that the current density in the wire is J [Amps $/ \mathrm{m}^{2}$] and wire temperature starts to increase due to heat generation by Joule heating. Assume there are no temperature gradients along the length of the wire and also the following values: $h=100 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}, k=200 \mathrm{~W} / \mathrm{m}-\mathrm{K}, r_{o}=0.002 \mathrm{~m}, \rho=2000 \mathrm{~kg} / \mathrm{m}^{3}, C=500$ $\mathrm{J} / \mathrm{kg}-\mathrm{K}, T_{o}=300 \mathrm{~K}$, and $\beta=10^{-6} \Omega-\mathrm{m}$
(i) Based on first law of thermodynamics, develop a governing equation for the time evolution of the wire temperature. Note that for a length, Δx, of the wire, the electrical resistance of the wire is $R=\beta \Delta x / A$ and the Joule heating rate over Δx is $I^{2} R$ or $(J A)^{2} R$ where A is the cross-sectional area of the cylindrical wire (7).
(ii) Solve the governing equation to determine the time evolution of the wire temperature (7).
(iii) What is the minimum current density, $J_{\text {min }}$, for which the wire will reach its melting point of 2000 K ? If $J=2 J_{\text {min }}$, how long will it take for the wire to reach the melting point? (6)
