1. (45)

a) The heat transfer can be gotten by performing an energy balance around a slice of the object

$q_{\text {total_out }}^{\prime}=q_{\text {half cylinder }}^{\prime}+q_{\text {flat bottom }}^{\prime}=h_{\text {cylinder }} \pi R\left(T_{\text {surf }}-T_{\text {air }}\right)+h_{\text {plate }} 2 R\left(T_{\text {surf }}-T_{\text {air }}\right)$
Only the heat transfer coefficients are unknown, so the problem is to calculate these.
Properties: at $\mathrm{T}_{\text {film }}=400 \mathrm{~K}$

$$
\begin{aligned}
& v_{\text {air }}=26.41 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& k_{\text {air }}=33.8 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet \mathrm{~K}} \\
& \operatorname{Pr}_{\text {air }}=0.69
\end{aligned}
$$

Bottom flat plate

Calculate the Reynolds number

$$
\operatorname{Re}_{L}=\frac{u 2 R}{v}=\frac{10 \frac{\mathrm{~m}}{\mathrm{~s}} 0.008 \mathrm{~m}}{26.41 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}=3029
$$

This is well below the transition value of 5e5, so laminar flow equations are used.
Correlation

$$
\overline{N u}=0.664 \operatorname{Re}_{x}^{1 / 2} \operatorname{Pr}^{1 / 3}=0.664 \sqrt{3029}(0.69)^{1 / 3}=32.3
$$

Back out h

$$
\bar{h}_{\text {plate }}=\frac{\overline{N u} \bullet k_{\text {air }}}{2 R}=\frac{31.32 \bullet 33.8 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet K}}{0.008 \mathrm{~m}}=136.4 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
$$

Top half cylinder - cylinder in a cross flow
Calculate Re

$$
\operatorname{Re}_{D}=\frac{u D}{v}=\frac{10 \frac{\mathrm{~m}}{\mathrm{~s}} 0.008 \mathrm{~m}}{26.41 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}=3029.156
$$

Correlation

Two are possible for the instruction to evaluate properties at $\mathrm{T}_{\text {film }}$
7.55b

$$
\overline{N u}=C \operatorname{Re}_{D}^{m} \operatorname{Pr}^{1 / 3}=0.683(3029)^{0.466} 0.69^{1 / 3}=25.293
$$

7.57

$$
\overline{N u}=0.3+\frac{0.62 \operatorname{Re}_{D}^{1 / 2} \operatorname{Pr}^{1 / 3}}{\left[1+\left(\frac{0.4}{\mathrm{Pr}}\right)^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{\mathrm{Re}_{D}}{282000}\right)^{5 / 8}\right]^{4 / 5}=27.96
$$

7.56 can be used, but properties should be looked up at the air temperature

$$
\begin{aligned}
& v_{\text {air }}=15.89 \times 10^{-6} \frac{m^{2}}{s} \\
& k_{\text {air }}=26.3 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet K} \\
& \operatorname{Pr}_{\text {air }}=0.707 \\
& \operatorname{Pr}_{\text {airat }}=0.684 \\
& \operatorname{Re}_{D}=\frac{10 \bullet 0.008}{15.89 \times 10^{-6}}=5034.6 \\
& \overline{N u}=C \operatorname{Re}_{D}^{m} \operatorname{Pr}^{n}\left(\frac{\operatorname{Pr}}{\operatorname{Pr}_{s}}\right)^{1 / 4}=0.26(5034.6)^{0.6}(0.707)^{0.37}\left(\frac{0.707}{0.684}\right)^{0.25}=38.37
\end{aligned}
$$

Back out h
7.55b

$$
\bar{h}_{\text {cylinder }}=\frac{\overline{N u} \bullet k_{\text {air }}}{D}=\frac{25.293 \bullet 33.8 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet K}}{0.008 \mathrm{~m}}=106.86 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
$$

7.57

$$
\bar{h}_{\text {cylinder }}=\frac{\overline{N u} \bullet k_{\text {air }}}{D}=\frac{27.962 \bullet 33.8 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet K}}{0.008 \mathrm{~m}}=118.14 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
$$

7.56

$$
\bar{h}_{\text {cylinder }}=\frac{\overline{N u} \bullet k_{\text {air }}}{D}=\frac{38.37 \bullet 26.3 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet K}}{0.008 \mathrm{~m}}=126.15 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
$$

Inserting these into the energy balance

7.55b

$$
q_{\text {total_out }}^{\prime}=106.86 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}(\pi 0.004 \mathrm{~m})(200 \mathrm{~K})+132.33 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}(0.008 \mathrm{~m})(200 \mathrm{~K})=480.3 \frac{\mathrm{~W}}{\mathrm{~m}}
$$

7.57

$$
q_{\text {total_out }}^{\prime}=118.14 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}(\pi 0.004 \mathrm{~m})(200 \mathrm{~K})+132.33 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}(0.008 \mathrm{~m})(200 \mathrm{~K})=508.6 \frac{\mathrm{~W}}{\mathrm{~m}}
$$

7.56

$$
q_{\text {total_out }}^{\prime}=126.15 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}(\pi 0.004 \mathrm{~m})(200 K)+132.33 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}(0.008 \mathrm{~m})(200 \mathrm{~K})=528.8 \frac{\mathrm{~W}}{\mathrm{~m}}
$$

2. (45)

Set up heat transfer problem

For no conduction in the x-direction, the 1-D steady state solution for the maximum temperature is given by equation 3.43 , where symmetry has been used

$$
T_{\max }=\frac{\dot{q} t^{2}}{2 k_{\text {glass }}}+T_{\text {surface }}
$$

The unknown in this equation is the surface temperature. This can be found by applying an energy balance at the surface, matching the amount generated in a slice to that leaving through convection
$q^{\prime \prime}=\int_{0}^{y=0.01 m} \dot{q} d y=h\left(T_{\text {surface }}-T_{\text {air }}\right)$
Note that h is the local value.

Properties

Air at $\mathrm{T}_{\text {film }}=350 \mathrm{~K}$

$$
\begin{aligned}
& v_{\text {air }}=20.92 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& k_{\text {air }}=30 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet \mathrm{~K}} \\
& \operatorname{Pr}_{\text {air }}=0.7
\end{aligned}
$$

Glass at 300 K

$$
k_{\text {glass }}=1.4 \frac{\mathrm{~W}}{\mathrm{~m} \bullet K}
$$

Find the convection coefficient

Calculate Re

$$
\operatorname{Re}_{L}=\frac{u L}{v_{\text {air }}}=\frac{30 \frac{\mathrm{~m}}{\mathrm{~s}} \bullet 3 \mathrm{~m}}{20.92 \times 10^{-6} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}=4,302,103 \geq 10^{5}
$$

The flow is turbulent

Correlation -
Notes
] 1) This should be a LOCAL calculation
2) The correlation should be for a constant q " boundary condition, no x conduction $N u=0.0308 \operatorname{Re}_{x}^{4 / 5} \operatorname{Pr}^{1 / 3}=0.0308(4302103)^{0.8} 0.7^{1 / 3}=5544.5$
(The constant T_{s} answer is $N u=0.0296 \operatorname{Re}_{x}^{4 / 5} \operatorname{Pr}^{1 / 3}=5328.5$)

Back out h

$$
h=\frac{N u \bullet k_{\text {air }}}{L}=\frac{5544.5 \bullet 30 \times 10^{-3} \frac{\mathrm{~W}}{\mathrm{~m} \bullet \mathrm{~K}}}{3 \mathrm{~m}}=55.45 \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}}
$$

(The constant T_{s} answer is $h=53.3 \frac{\mathrm{~W}}{\mathrm{~m}^{2} K}$)

Solve for the surface temperature

$$
\begin{aligned}
& \int_{0}^{y=0.01 m} \dot{q} d y=h\left(T_{\text {surface }}-T_{\text {air }}\right) \\
& 10000 \frac{W}{m^{2}}=55.45 \frac{W}{m^{2} K}\left(T_{\text {surface }}-300 \mathrm{~K}\right) \\
& T_{\text {surface }}=480.4 \mathrm{~K}
\end{aligned}
$$

(The constant T_{s} answer is $T_{s}=487.6 \mathrm{~K}$)

Solve for the maximum temperature

$$
T_{\max }=\frac{10^{6} \frac{\mathrm{~W}}{\mathrm{~m}^{3}}(0.01 \mathrm{~m})^{2}}{2\left(1.4 \frac{\mathrm{~W}}{\mathrm{mK}}\right)}+480.4 \mathrm{~K}=516.1 \mathrm{~K}
$$

(The constant T_{s} answer is $T_{\text {max }}=523.3 \mathrm{~K}$)
(45) 3

At steady state, a thin solid rod with no radial temperature variation ($T \neq T(r)$) moves at constant velocity u in the x-direction. The rod passes through a section of vacuum occupying $0 \leq x \leq L$. Outside this vacuum section, for $x \leq 0$ the temperature of the rod is maintained at $T=0$, and for $x \geq \mathrm{L}$ the temperature of the rod is maintained at T_{L}. Neglecting radiation in the vacuum section, find the temperature of the rod at $\mathrm{x}=\mathrm{L} / 2$.
Hint: This problem can be viewed as inviscid flow in an insulated tube

Solution

The governing differential equation can be obtained two ways:

1. Starting from a slice of the rod, the system at steady state, with no generation

$$
\begin{aligned}
& \dot{E_{\text {in }}}-\dot{E_{\text {out }}}=0 \\
& \left.\rho A u c_{p} T\right|_{x}-\left.\rho A u c_{p} T\right|_{x+\Delta x}+\left(-\left.k A \frac{d T}{d x}\right|_{x}\right)-\left(-\left.k A \frac{d T}{d x}\right|_{x+\Delta x}\right)=0
\end{aligned}
$$

Divide by A, $\Delta \mathrm{x}$
$-\rho u c_{p} \frac{\left.\left.T\right|_{x+\Delta x} T\right|_{x}}{\Delta x}+k A \frac{\left(\left.\frac{d T}{d x}\right|_{x+\Delta x}-\left.\frac{d T}{d x}\right|_{x}\right)}{\Delta x}=0$
Take the limit as $\Delta \mathrm{x}$ goes to zero

$$
\lim _{\Delta x \rightarrow 0}\left(-\rho u c_{p} \frac{\left.\left.T\right|_{x+\Delta x} T\right|_{x}}{\Delta x}+k \frac{\left(\left.\frac{d T}{d x}\right|_{x+\Delta x}-\left.\frac{d T}{d x}\right|_{x}\right)}{\Delta x}\right)=-\rho u c_{p} \frac{d T}{d x}+k \frac{d^{2} T}{d x^{2}}=0
$$

2. Starting from the general energy conservation given by equations 6.28 a and 6.28 b .

$$
\rho c_{p}\left(u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}\right)=k\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)+\mu\left\{\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+2\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right]\right\}+\dot{q}
$$

This problem is 1-D with constant velocity and no generation, reducing the equation to

$$
\rho c_{p} u \frac{d T}{d x}=k \frac{d^{2} T}{d x^{2}}
$$

or equivalently,

$$
\frac{d^{2} T}{d x^{2}}-\frac{u}{\alpha} \frac{d T}{d x}=0
$$

Note that if any convection in the radial direction were present in this problem, this equation would have failed to capture that!

This is a second order ordinary differential equation. Solving:
Convert

$$
\begin{array}{ll}
\lambda^{2}-\frac{u}{\alpha} \lambda=0 & T(x)=C_{1}+C_{2} e^{\frac{u}{\alpha} x} \\
\lambda\left(\lambda-\frac{u}{\alpha}\right)=0 & \text { check } \\
\lambda=0 & \frac{d^{2} T}{d x^{2}}=\frac{u^{2}}{\alpha^{2}} C_{2} e^{\frac{u}{\alpha} x} \\
\lambda=\frac{u}{\alpha} & -\frac{u}{\alpha} \frac{d T}{d x}=-\frac{u^{2}}{\alpha^{2}} C_{2} e^{\frac{u}{\alpha} x}
\end{array}
$$

Applying boundary conditions

1) $T(x=0)=0$
$0=C_{1}+C_{2}$
$C_{2}=-C_{1}$
$T(x)=C_{1}\left(1-e^{\frac{u^{\alpha}}{\alpha}}\right)$
2) $T(x=L)=T L$

$$
\begin{aligned}
& T_{L}=C_{1}\left(1-e^{\frac{u L}{\alpha}}\right) \\
& C_{1}=\frac{T_{L}}{1-e^{\frac{u L}{\alpha}}} \\
& T(x)=T_{L}\left(\frac{1-e^{\frac{u}{\alpha} x}}{1-e^{\frac{u L}{\alpha}}}\right)
\end{aligned}
$$

The midpoint temperature is then

$$
T\left(\frac{L}{2}\right)=T_{L}\left(\frac{1-e^{\frac{u L}{2 \alpha}}}{1-e^{\frac{u L}{\alpha}}}\right)=T_{L}\left(\frac{1-e^{\frac{\rho u c_{p} L}{2 k}}}{1-e^{\frac{\rho u c_{p} L}{k}}}\right)
$$

