CS 188 Midterm

11:15am-12:30pm March 22, 1990
Please try to be precise in your answers. The maximum possible score on this exam is 100 points. Good Luck!

1 Resolution Proof [20 pts]

Formulate as predicate-calculus expressions the facts given in the following puzzle. Use the resolution method to prove that Cafe-Stanford is criminal. Remember to convert to Conjunctive Normal Form before starting the proof!

1. It is a crime to sell a bad cappucino.
2. All the beverages that Tom drank were purchased by him from either Cafe-Stanford or Cafe-Berkeley.
3. One of the beverages that Tom drank was a bad cappucino.
4. Tom never bought anything from Cafe-Berkeley.

Use the following predicates: Bad (x), Cappucino (x), Criminal (x), Beverage (x), Drank (x, y) for "x drank y", Sells ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) for "x sells y to z ".

2 Clause Form [20 pts]

Transform the negation of the following well-formed formula to clause form. Is the (original) formula valid?

$$
\left[\exists x\left(p_{1}(x) \wedge q_{1}(x)\right)\right] \Rightarrow\left[\exists x\left(p_{1}(x)\right) \wedge \exists x\left(q_{1}(x)\right)\right]
$$

3 Search [20 pts]

1. A knight on an infinite chessboard must be transferred from an initial position of $(0,0)$ to a goal position (m, n) using the minimum number of legal knight moves. Find an admissible heuristic function h that you could use to solve the problem using the A^{*} algorithm.
2. Suppose that for some search problem for which you want to use A^{*} search you have found an evaluation function that never overestimates the cost to a goal state by more than K units. How can you get a guaranteed optimal solution from A^{*} search?

4 Lisp [20 pts]

Define a LISP function ALLSUB (u, v) that returns a list of all occurences of a list of atoms u as a sublist of another list of atoms v. The occurence of a particular sublist is represented by a number n corresponding to the position in the list v of the beginning of that occurence. For example

ALLSUB ('(A A), '(A A A B A A)) $=\left(\begin{array}{ll}1 & 2\end{array}\right)$

5 Alpha-Beta Search [20 pts]

Explore the tree using the alpha-beta procedure. Assume that the top level is a maximizing level. Cross out all nodes where static evaluation need not occur. Indicate the winning path or paths.

