CS 164: Fall 1999 Midterm Solutions Professor L. Rowe

PROBLEM 1.

Answer the following TRUE/FALSE questions:

All non-deterministic finite state automatons can be converted to a deterministic finite state automaton: TRUE

An object-oriented program is easier to read and understand than a conventional procedural program: TRUE

The class of the value assigned to the *this* variable in a method is the class within which the method is declared: FALSE

A Java method signature does not include the return type: TRUE

A *transient* instance variable in Java is not written to persistent storage if the object is output: TRUE

The class of the Class object is Class: TRUE

A regular expression can specify the set a^nb^n where 0 < n < 5, that is {ab, aabb, ..., aaaabbbb}: TRUE

A shift reduce parser performs reductions in the reverse order specified by a left-most derivation: FALSE

The string aabb is a sentential form for the grammar S->ab | aSb: TRUE

A JO99 variable has an l-value and r-value: TRUE

An abstract syntax tree is derived from a parse tree by removing extraneous nodes and restructuring the tree: TRUE

A handle is a simple phrase: TRUE

Some JO99 objects do not have a class: FALSE

The following finite state automation recognizes the laguage specified by the regular expression a^*1a^+ : FALSE

State	Input	NextState
0	1	1
0	а	0
1	а	2
2	1	1
2	а	2
Starin	a stat	ce is O

A context free grammar can be used to recongnize any context sensitive language: FALSE

PROBLEM 2.

Given the parse table and grammar:

	b	a	\$		S	A
0	s3	s2			1	5
1			accep	t		
2	r4	s2	r4			4
3			r1			
4	r3		r3			
5	s6					
6		s2				7
7	Í		r2			

- r1: S->b
- r2: S->AbA
- r3: A->aA
- r4: A->a

a) Show a right-most derivation for the input aaba.

S->AbA->Aba->aAba->aaba

b) When parsing the input aaba, how many shifts will be performed?

4

c) Show the parse tree for aaba.

PROBLEM 3. Given the grammar

```
S->AcD
A->ab|aAb
D->d|Dd
a) What is the language?
a<sup>n</sup>b<sup>n</sup>cd<sup>m</sup>
n, m >=1
b) Fill-in the following sets:
FIRST(s) = \{a\}
FIRST{A} = {a}
FIRST{D} = {d}
c) Fill-in the following sets:
FOLLOW(S) = \{\}\}
FOLLOW{A} = {c, b}
FOLLOW\{D\} = \{d, \}\}
d) Given the item set I:
S'->.S$
S->.AcD
A->.ab
A->.aAb
which is CLOSURE (\{S' \rightarrow S\}) for the grammar above, how many edges will exit this
state in the canonical LR (0) collection?
```

3 exit edges

e) Given the item set I in part d, what items are in GOTO (I, a)? A->a.b A->a.Ab A->.ab A->.aAb

PROBLEM 4.

Given the following transition table:

State	Input	NextState
0	S	1
0	а	3
0	b	2
3	а	3
3	A	4
3	b	2
3	S	5

CS 164, Midterm 1, FALL 1999

4	a	3	
4	S	7	
4	С	б	
Starting	state	is	0

a) What are the dimensions in the ACTION table (i.e number of rows and number if columns)?

8 rows 4 columns (a, b, c, \$)

b) How many shift entries?

7

c) List the column headers in the GOTO table.

S, A

d) What entries might appear in ACTION tanle rows for states with no exiting edges?

reduce accept error (i.e. blank)

> Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact<u>mailto:examfile@hkn.eecs.berkeley.edu</u>