CS 164: Fall 1999
 Midterm Solutions
 Professor L. Rowe

PROBLEM 1.

Answer the following TRUE/FALSE questions:
All non-deterministic finite state automatons can be converted to a deterministic finite state automaton: TRUE
An object-oriented program is easier to read and understand than a conventional procedural program: TRUE
The class of the value assigned to the this variable in a method is the class within which the method is declared: FALSE
A Java method signature does not include the return type: TRUE
A transient instance variable in Java is not written to persistent storage if the object is output: TRUE
The class of the Class object is Class: TRUE
A regular expression can specify the set $\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}$ where $0<\mathrm{n}<5$, that is $\{\mathrm{ab}, \mathrm{aabb}, \ldots$, aaaabbbb\}: TRUE
A shift reduce parser performs reductions in the reverse order specified by a left-most derivation: FALSE
The string aabb is a sentential form for the grammar $\mathrm{S}->\mathrm{ab} \mid \mathrm{aSb}$: TRUE A JO99 variable has an l-value and r-value: TRUE
An abstract syntax tree is derived from a parse tree by removing extraneous nodes and restructuring the tree: TRUE
A handle is a simple phrase: TRUE
Some JO99 objects do not have a class: FALSE
The following finite state automation recognizes the laguage specified by the regular expression $\mathrm{a}^{*} 1 \mathrm{a}^{+}$: FALSE

State	Input	NextState
0	1	1
0	a	0
1	a	2
2	1	1
2	a	2
Staring	state is 0	

A context free grammar can be used to recongnize any context sensitive language: FALSE

PROBLEM 2.

Given the parse table and grammar:

	b	a	\$	S	A
0	s3	s2		1	5
1			accept		
2	r4	s2	r4		4
3			r1		
4	r3		r3		
5	s6				
6		s2			7
7			r2		

r1: S->b
r2: S->AbA
r3: A->aA
r4: A->a
a) Show a right-most derivation for the input aaba.

S->AbA->Aba->aAba->aaba
b) When parsing the input aaba, how many shifts will be performed?

4
c) Show the parse tree for aaba.

PROBLEM 3.

Given the grammar

S->AcD
A->ab|aAb
D->d|Dd
a) What is the language ?
$a^{n} b^{n} c d^{m}$
$\mathrm{n}, \mathrm{m}>=1$
b) Fill-in the following sets:

FIRST(s) $=\{\mathrm{a}\}$
$\operatorname{FIRST}\{\mathrm{A}\}=\{\mathrm{a}\}$
$\operatorname{FIRST}\{D\}=\{d\}$
c) Fill-in the following sets:
$\operatorname{FOLLOW}(\mathrm{S})=\{\$\}$
FOLLOW $\{\mathrm{A}\}=\{\mathrm{c}, \mathrm{b}\}$
FOLLOW $\{\mathrm{D}\}=\{\mathrm{d}, \$\}$
d) Given the item set I :

S'->.S\$
S->.AcD
A->.ab
A->.aAb
which is CLOSURE ($\left\{\mathrm{S}^{\prime}->. \mathrm{S} \$\right\}$) for the grammar above, how many edges will exit this state in the canonical LR (0) collection?

3 exit edges
e) Given the item set I in part d, what items are in GOTO (I, a)?

A->a.b
A->a.Ab
A->.ab
A->.aAb

PROBLEM 4.

Given the following transition table:

State	Input	NextState
0	S	1
0	a	3
0	b	2
3	a	3
3	A	4
3	b	2
3	S	5

4	a	3	
4	S	7	
4	C	6	
Starting	state	is	0

a) What are the dimensions in the ACTION table (i.e number of rows and number if columns)?

8 rows
4 columns (a, b, c, \$)
b) How many shift entries?

7
c) List the column headers in the GOTO table.

S, A
d) What entries might appear in ACTION tanle rows for states with no exiting edges?
reduce
accept
error (i.e. blank)

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contactmailto:examfile@hkn.eecs.berkeley.edu

