Professor Oliver M. O'Reilly

First Midterm Examination Closed Books and Closed Notes

Question 1

A Planar Pendulum (25 Points)

As shown in Figure 1, a particle of mass m is attached to a fixed point O by an inextensible string of length L. The motion of the particle is in the $\mathbf{E}_x - \mathbf{E}_y$ plane.

Figure 1: Schematic of a particle of mass m which is attached to a fixed point O by an inextensible string of length L. A vertical gravitational force $mg\mathbf{E}_x$ acts on the particle.

- (a) Starting from the usual representation for the position vector $\mathbf{r} = L\mathbf{e}_r$, establish expressions for the velocity \mathbf{v} and acceleration \mathbf{a} vectors of the particle. For the two cases where $\dot{\theta} < 0$ and $\dot{\theta} > 0$, what are the unit tangent \mathbf{e}_t and unit normal \mathbf{e}_n vectors to the path of the particle? Illustrate your answers with a sketch.
- (b) Draw a freebody diagram of the particle.
- (c) Show that the tension force T acting on the particle is

$$\mathbf{T} = -mL\left(\frac{g}{L}\cos(\theta) + \dot{\theta}^2\right)\mathbf{e}_r,\tag{1}$$

In addition, show that the equation of motion of the particle is

$$\ddot{\theta} = -\frac{g}{L}\sin(\theta). \tag{2}$$

(d) Suppose the particle is given an initial speed $L\dot{\theta}_0$ when $\theta = \theta_0 = \frac{\pi}{2}$. Show for the ensuing motion that

$$\dot{\theta}^2(\theta) = \dot{\theta}_0^2 + \frac{2g}{L}\cos(\theta). \tag{3}$$

(e) What is the minimum value of $\dot{\theta}_0$ required so that the string will not become slack during the ensuing motion?

Question 2

A Particle on a Cosinusoidal Track (25 Points)

As shown in Figure 2, a bead of mass m moves on a thin circular rod that is rough. The equation for the centerline of the rod is given by the equation $y = \alpha \cos(x)$ where α is a constant. The bead is connected to a fixed point A by a linear spring of stiffness K and unstretched length L_0 . The contact between the bead and the rod is rough with a coefficient of static friction μ_s and a coefficient of kinetic friction of μ_k . In addition to friction, spring, and normal forces, a vertical gravitational force $-mg\mathbf{E}_y$ acts on the bead.

Figure 2: Schematic of a particle of mass m moving on a rough guide.

(a) Using a Cartesian coordinate system, the position vector of the particle is

$$\mathbf{r} = x\mathbf{E}_x + \alpha\cos(x)\mathbf{E}_y. \tag{4}$$

Derive expressions for the speed v, and velocity \mathbf{v} and acceleration \mathbf{a} vectors of the particle. What is the unit tangent vector \mathbf{e}_t to the curve that the bead is moving on?

- (b) Draw a freebody diagram of the particle. Give clear expressions for the forces acting on the particle, and distinguish the static friction and dynamic friction cases.
- (c) Suppose that the particle is moving on the curve with $\dot{x} > 0$. Show that the equation governing the motion of the particle is

$$m\dot{v} = -\mu_k \|\mathbf{N}\| + \frac{mg\alpha \sin(x)}{\sqrt{1 + \alpha^2 \sin^2(x)}} + \mathbf{F}_s \cdot \mathbf{e}_t, \tag{5}$$

where \mathbf{F}_s is the spring force and \mathbf{N} is the normal force. How would you solve for \mathbf{N} ?

(d) Suppose that the particle is stationary at a point $x = x_0$ on the curve. In the absence of a spring force, show that this implies that

$$|\alpha \sin(x_0)| \le \mu_s. \tag{6}$$

If $\mu_s = \frac{1}{\sqrt{2}}$ and $\alpha = 1$, then illustrate the possible locations x_0 .

Pr = Co O Ex + Sin O Ey
Po = - Sin O Ex + Co O Ey

(c)
$$F = ma$$

· Cr $T + mg Co \theta = -mL \dot{\theta}^2$ $\Rightarrow T = Tcr - mL \left(\frac{8}{L}Co \theta + \dot{\theta}^2\right) Cr$
· Ce $-mg Sin \theta = mL \ddot{\theta}$ \Rightarrow $\ddot{\theta} = -\frac{9}{L} Sin \theta$
· $F = N = 0$.

(d) From
$$\ddot{\theta} = -\frac{9}{L} \sin \theta$$
 we use the identity $\ddot{\theta}(\theta) = \frac{d\dot{\theta}}{d\theta}\dot{\theta}$

$$\Rightarrow \int_{\theta_0}^{\theta} -\frac{9}{L} \sin u \, du = \int_{\dot{\theta}_0}^{\dot{\theta}} x \, dx \qquad \Rightarrow \qquad \frac{1}{L} \dot{\theta}^2 = \frac{1}{L} \dot{\theta}_0^2 + \left(\frac{9}{L} \cos u\right)_{\theta_0 = \pi/2}^{\theta}$$

$$\Rightarrow \dot{\theta}^2 = \dot{\theta}_0^2 + \frac{28}{L} \cos \theta.$$

Using results from (c)
$$r(d)$$
 $T = -mL(\dot{\Theta}_0^2 + \frac{38}{L}C_0\Theta)$ $\mathbb{C}r$
String becomes slach when $\dot{\Theta}_0^1 + \frac{38}{L}C_0\Theta \leq 0$
This happens when $C_{22}\Theta \leq -\frac{L}{3g}\dot{\Theta}_0^2$
So if $\dot{\Theta}_0^2 \geq \frac{38}{L}$, then the string con never become slach.
Even when the string is vartical ($\Theta = TT$)

QUESTION 2

$$\underline{Q}_{t} = \underline{Y} = \frac{\dot{x}}{|\dot{x}|} \frac{1}{\sqrt{1+\alpha^{2} \sin^{2} x}} \left(\underline{E}_{x} - \alpha \sin x \underline{E}_{y}\right)$$

a= x(Ex- ~Sin x Ey) + x2 ~ Sox Ey

N = Wnen + Nbeb

$$N = N e_n$$
 and $N = -F_s \cdot e_n + mv^2 + mg sign(-a co2)$

Passible sticking locations.