
CS ��� Handout ��

Midterm Examination

� Please read all instructions �including these� carefully�

� Please print your name at the bottom of each page on the exam�

� There are seven questions on the exam� each worth between �� and 	� points� You have � hour
and 	� minutes to work on the exam� so you should plan to spend approximately �	 minutes on
each question�

� The exam is closed book� but you may refer to your two sheets of prepared notes�

� Please write your answers in the space provided on the exam� and clearly mark your solutions�
You may use the backs of the exam pages as scratch paper� Please do not use any additional
scratch paper�

� Solutions will be graded on correctness and clarity� There are no
tricky� problems on the
exam�each problem has a relatively simple and straightforward solution� You may get as few
as � points for a question if your solution is far more complicated than necessary�

NAME Sample Solutions

SID or SS�

Problem Max points Points

� ��

	 ��

� 	�

� ��

� 	�

� ��

� ��

TOTAL ���

Fall �� page � of �

CS ��� Handout ��

�� Regular Expressions ��� points�

Consider a language where real constants are de�ned as follows A real constant contains a
decimal point or E notation� or both� For instance� ����� 	����	��	�� ���	E�	� and �E�� are
real constants� The symbol
�� denotes unary minus and may appear before the number or on
the exponent� There is no unary
�� operation� There must be at least one digit to left of the
decimal point� but there might be no digits to the right of the decimal point� The exponent
following the
E� is a �possibly negative� integer�

Write a regular expression for such real constants� Use the standard regular expression notation
described by the following grammar

R � � j char j R�R j R � j RR j �R�

You may de�ne names for regular expressions you want to use in more than one place �e�g��
foo � R��

digit � �� �� �� �� �� �� �� �� 	�

posint � digit digit�

int � ��� �� posint

exp � E int

frac � � digit�

real � �int frac �exp� ��� � �int �frac� �� exp�

Fall �� page 	 of �

CS ��� Handout ��

	� Finite Automata ��� points�

Consider a DFA with a start state s� and a transition function trans� For a state s and input
character c� trans�s� c� � s� if there is a transition from state s to state s� on character c� If
there is no transition from s on c then trans�s� c� � none� The following algorithm simulates
the behavior of such a DFA� accepting if the input string is accepted by the DFA and rejecting

otherwise�

state � s�
while there�s input left do

char � next input character
if trans�state�char� � none then stop and reject

state � trans�state�char�
�end of loop�
accept if state is a �nal state� otherwise reject

Now consider an NFA with a start state s� and a transition function trans� In this case� for a
state s and input character c �we now allow c � ��� trans�s� c� is the set of states s� for which
there is a transition from s to s� on c� In the style of the algorithm above� give a �deterministic�
algorithm that simulates the behavior of such an NFA� You may use the ��closure operation
described in class and in the text�

Simulate subset construction� Use stateset instead of state�

stateset� �closure�s��
while there�s still input left do�

char� next input character

if �closure�
S
s�stateset trans�s� char�� � � then stop and reject

stateset� �closure�
S
s�stateset trans�s� char��

�end of loop�

accept if there�s a final state in stateset� otherwise reject�

Fall �� page � of �

CS ��� Handout ��

�� Grammars �	� points�

Consider the following grammar� The nonterminals are E� T� and L� The terminals are ��id�����
and �� The start symbol is E�

E � E � T j T

T � id j id�� j id�L�

L � E� L j E

Give an LL��� grammar that generates the same language as this grammar� As part of your
work please show that your grammar is LL����

�a� Eliminate left recursion�

E � TE�

E� � �TE� j �

T � id j id�� j id�L�

L � E� L j E

�b� Left factor�

E � TE�

E� � �TE� j �

T � id T�

T� � � j �T��

T�� � � j L�

L � EL�

L� � � L j �

�c� Check that it�s LL���� For this part you just needed to give enough

information to show that there would be no conflicts in the parsing table�

The following is sufficient�

E� � �TE� j � First��TE�� � f�g
Follow�E�� � f�� �� � g

T� � � j �T�� First��T��� � f�g
Follow�T�� � f�� �� �� � g

T�� � � j L� First��� � f�g
First�L�� � fidg

L� � � L j � First�� L� � f� g
Follow�L�� � f�g

Fall �� page � of �

CS ��� Handout ��

�� Parsing ��� points�

In both parts of this question� we are looking for clarity and brevity as well as the right idea�
Suppose you are writing a parser for a programming language that includes the following syntax
for looping constructs

Loop � do stmt while expr

j do stmt until expr

j do stmt forever

�a� �� points� A predictive parser �i�e�� a top�down parser with no backtracking� can�t use this
grammar� Give a brief �a couple of sentences� explanation of this fact�

When trying to expand a production for nonterminal ��loop��� the parser

cannot decide which of the three productions to expand using only the next

few input tokens�

�b� �� points� Give a brief explanation of why a bottom�up parser does not have di�culty with
this grammar�

When a bottomup parser must decide which of the three productions to

choose �reduce�� the ��while��� ��until��� or ��forever�� has already been

read and shifted onto the stack�

Fall �� page � of �

CS ��� Handout ��

�� Parsing �	� points�

Consider the following grammar� The nonterminals are S� and S� The terminals are op and x�
The start symbol is S��

S� � S

S � S op S j x

�a� ��� points� Draw the DFA built from sets of LR��� items for this grammar� Show the
contents of each state� �Note Don�t augment the grammar with a new start symbol��

� S� � � S �

� S � � S op S �

� S � � x �

S � � x

V V

� S� � S � � �� � S � x � �

� S � S � op S �

 �

� op x �

�

V �

� S � S op � S �

� S � � S op S �

� S � � x �

� �

op � � S

� V

� S � S op S � � �

� S � S � op S �

�b� �� points� Is this grammar SLR���� Brie�y explain why or why not�

No� The grammar is ambiguous� For example� there are two parses of the

string ��x op x op x���

An alternative justification is that there is a shift�reduce conflict in

state �� Note that there is no shift�reduce conflict in the state ���

�c� �� points� Is this grammar LR���� Briefly explain why or why not�

No� The grammar is ambiguous�

Fall �� page � of �

CS ��� Handout ��

�� Bison and Abstract Syntax Trees ��� points�

Consider the following constructors for a tree language

Expression app�Expression� Expression��

Expression lambda�Expression� Expression��

Expression id���

Now consider the following Bison grammar

�token ID LAMBDA

�type �Expression� Expr

��

Expr � ID

� �� � id���

� ��� LAMBDA ID ��� Expr ���

� �� � lambda� id��� ����

� ��� Expr Expr ���

� �� � app���� ����

Draw the abstract syntax tree that would be produced when parsing the sequence of tokens
below� Label all the nodes of your AST with the appropriate constructor�

� � LAMBDA ID � �ID ID� � � LAMBDA ID � ID � �

app

lambda lambda

id app id id

id id

Fall �� page � of �

CS ��� Handout ��

�� Type Checking ��� points�

Suppose we want to design a type checker for Scheme programs� In Scheme� functions can be
passed as arguments to and returned as results from functions� Recall the type checking rule for
function application given in class

A � f t� � t� A � x t�

A � f�x� t�

Self�application occurs when a function is called with itself as a parameter� This is� if f is a
function taking a function as a parameter� the f�f� is an instance of self�application� Brie�y
explain why type checking of self�application must always fail using the type checking rule above�

From the rule� in a selfapplication f�f� we know that�

f � t� � t�

f � t�

But t� is a proper subexpression of t� � t�� so t� �� t� � t�� Since

f cannot have two disinct distinct types� type checking fails for self

application�

An alternative �but equivalent� answer is

If f � t� � t� and f � t� then t� � t� � t� since f has one type�

But then

t� � t� � t� � �t� � t�� � t� � ��t� � t�� � t�� � t� �

��� � t� � t� � t�

which is infinite� Since types are finite size� type checking must fail for

selfapplication�

Fall �� page � of �

