
CS164 Midterm #2 Spring 1994 Prof. L. Rowe

1. (30 points; 2 points each) Circle T or F to indicate whether each statement is true or false.

Т	F A sentential form may only contain terminal symbols
T F	The following grammar is a regular grammar: S -> A b b A -> a S A
Т	F The language specified by the grammar in the previous question is { b (ab)* } union { (ab) ⁺ }
Т	F There is no grammar and input sentence for which the leftmost and rightmost derivations are identical.
T F	The following <i>flex</i> pattern will match at least the input: 123.45 [^A-Za-z]+"."[^A-Za-z]
Т	F A DFA may have less states than the number symbols in the input alphabet.
Т	F $\stackrel{A}{}$ bottom-up parser can generate better error messages than a top-down parser.
Т	F In <i>panic mode</i> error-recovery, the parser exits on the first error it encounters.
Т	F The address of a variable can never be an rvalue.
Т	F The language $\{a^nb^nc^n\}$ can be specified by a context free grammar.
Т	F The following automaton will recognize sentences in the language { $a^{*} (b c) d^{*}$ }

- T F The following is a leftmost derivation $S \Rightarrow ABaD \Rightarrow aBbaD \Rightarrow abbaD \Rightarrow abbac$
- T $F_{\text{compile-time.}}^{\text{In OO94, the compiler can determine what method to call at compile-time.}$
- T A relocatable object file contains a symbol table that has an entry
 F for each function not defined in the file that is called from a function defined in the file.
- T $F_{entrant.}^{A program that is to be run using shared text segments must be re-$

2. (5 possible) Given the following code

```
class Person: Object { string name; int ssan, year_of_birth; };
class Student : Person { int units_completed, year_entered; };
Person myperson;
Student mystudent;
main () {
    myperson = Person.new();
    my student = Student.new();
};
```

Which of the following expressions when executed after the assignment statements in main will return a pointer to an object of type Cobject?

(a) myperson.classof

(b) Cobject

- (c) mystudent.classof.parent
- (d) Object.classof

(e) none of (a)-(d)

(f) all of (a)-(d)

3. (10 possible) Using the same class definitions as above, what is the type returned by the following expressions?

```
(a) mystudent.classof.parent.new()
```

(b) Object.classof.new()

4. (20 possible) The following table traces the contents of the stack of a shift-reduce parser. Upper case letters are non-terminals and lower case letters are terminals.

Top

Bott	om						
a							
а	b						
a	Х						
a	Y						
a	Y	a					
а	Y	a	b				
a	Y	a	Х				
а	Y	a	Y				
а	Y	a	Y	с			
а	Y	Х					
а	Y						
а	Y	c					
Χ							

(a) What is the input sentence?

(b) What is the grammar?

state	a	b	\$	S	A
0	s4	s6		1	2
1			accept		
2	s4	s6			3
3			r1		
4	s4	s6			5
5	r2	r2	r2		
6	r3	r3	r3		

5. (20 possible) Consider the following action/goto table for a shift-reduce parser.

and the rules:

 $r1: S \rightarrow A A$

r2: A -> a A

r3: A -> b

(a) What sequence of actions (e.g., shift to state i, reduce by rule j, accept or error) occur when parsing the input: b b a a? The first action is given to you.

s6

(b) What is the minimum number of actions that this parser would have to go through when recognizing a valid sentence?

(c) What does it mean if the goto table does not contain a state number when the parser attempts to push a state on the stack after removing the handle during a reduce action?

6. Show an unambiguous grammar for expressions with identifiers (id) and the operators @ and ? where @ is right associative, ? is left associative, and @ is lower precedence than ?.

For example, your grammar should be able to parse the sentence: id @ id ? id

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu