UNIVERSITY OF CALIFORNIA
College of Engineering
Department of Electrical Engineering
and Computer Sciences
Coputer Science Division

Computer Science 184 - Computer Graphics

Fall 1992 - Midterm Exam

Professor Brian A Barksy

TAs: Mark Halstead and Dan Garcia

Page 1
Question 1: Transformations [20 points]

Figure 1 shows a triangle ABC transformed by a transformation matrix \mathbf{T} to a new position PQR .

Figure 1
A) Write down the transformation matrix \mathbf{T}. Show all work. [17 points]
B) If the problem was to compute the inverse matrix \mathbf{T}^{-1}, i.e. if the original triangle was PQR which gets transformed by \mathbf{T}^{-1} to ABC , is there enough information to compute all the elements of \mathbf{T}^{-1} ? [3 points]

Answer 1: Transformations

Page 2

Question 2: Scan Conversion [20 points]

A) For each of the 18 regions labeled a-r in figure 2, fill in the chart below with the words "IN" or "OUT" which represent what the particular scan conversion rule (odd/even vs. non-zero winding) would conclude about that region. [13 points]

Figure 2
B) What is the minimum number of edges a polygon would need so that the non-zero winding rule and odd/even rule have differenet answers for a particular region of a polygon? Draw it, highlight the region wich is labeled differently and tell which rule labeled it in and which one out. [7 points]

Answer 2: Scan Conversion

Label	Odd/Even	Non-zero Winding
a		
b		
c		
d		

Page 3

Question 3: Hierarchial Modeling [20 points - 10 points this page, 10 points next page]
A) The following diagram represents a hierarchial object description which might be found in a SDL file. Fill in the missing arguements to the transformation statements so that object \#1 is instanced correctly in group \#2 and group \#2 is instanced correctly in group \#3. [10 points]

The transformation statement format is: rotate (axis) (degrees), translate (tx,ty,tz) and scale (sx,sy,sz). Note that the axes are in a right handed coordinate system, as in SDL and GL, therefore use the right hand convention for rotations.

Answer 3: Hierarchial Modeling

1st: rotate \qquad) (4 \qquad _) 2nd rotate \qquad (
3rd:transate \qquad ,-_-_)
1st: rotate \qquad) (——)
2nd: translate)
\qquad , ,

Question 3: Hierarchial Modeling (continued)
B) The composite object show in part (A) could be represented alternatively as a list of verticies and faces in group \#3, without the hierarchy of transformations. List some advantages and disadvantages of both the hierarchial and non-hierarchial modeling schemes. Consider the problem of rendering, animation, storage and anything else you can think of. [10 points]

Answer 3: Hierarchial Modeling

Page 5

Question 4: Projections [20 points]

A unit wireframe cube is centered at $(0,0, .5)$ in the left-handed picture-plane coordinate system as shown in figure 3 below. The plane of projection is the $x-y$ plane. If the center of projection (COP) is at $(0,0,-\infty)$, the projection of the cube onto the projection plane is shown in figure 4 .

A) If the COP is moved to $(0,0,-3)$ as shown in figure 3 , draw the resulting projection in the grid provided below. Show all work - a sketch with no algebra will receive very little credit. [10 points]
B) The COP remains at $(0,0,-3)$. The cube is deformed such athat its projection is exactly that of figure 4 . Note that there are infinitely many deformations that generate the same projection. Assume the deformation does not scale the cube along the z-axis (i.e. z-coordinates are unchanged). What are the coordinates of the verticies of the cube afer deformation? [10 points]

Answer 4: Projections

Draw your projection for part (A) above

Page 6

Question 5: User interface Considerations [20 points]

In your "Polygon Entry" assignment you created polygons by clicking in the window to add verticies and then clicked a different way to signify that you were done. Here we consider user interface issues related to the deletion of verticies. A fellow student (who didn't attend the 2-D Interaction lecture) suggests the following interaction technique:

1) Type Esc-Shift-Control-7, which tells the computer the user is ready to choose the single vertex to remove.
2) Type the pixel coordinates of the vertex in the follllowing format exactly: "[\{4-digit-X-location\},\{4-digit-Y-location\}]". e.g. "[\{0123\}, \{0056\}]" for the vertex at point $(123,56)$
3) Type "REMOVE_THE_VERTEX_NOW"
A) Describe briefly three distinct, fundamental problems with this suggestion. [9 points]
B) You are hired by the Nanosoft ${ }^{\mathrm{TM}}$ corporation to implement the delete-vertex module in a large 2-D draw-style program. You are given an entire semester to create the most flexible and powerful module possible. Your users will be people of all ranges of computing skills - from novices to experts. Assume you have at your disposal the standard draw selection tools. Describe (at a user level, not a programming level) the mouse-oriented techniques you would use for removing verticies. Explain reasons behind the decisions you make. [11 points]

Answer 5: User interface Considerations

1992 by Brian A. Barsky

translated to HTML by Walter Hsiao
Eta Kappa Nu (December 1995)

