ME109 - Heat Transfer

Midterm 1- Fall'06
Instructor: Prof. A. Majumdar
Oct. 13, 2006; 12:10 am - 1:00 pm; Maximum Points $=30$
NOTE: This is an open book, open notes exam.

1. Consider a material manufacturing process, where a thin film is deposited on top of a substrate, as shown in the figure below. The temperature of the bottom surface of the substrate is kept at $T_{0}=30^{\circ} \mathrm{C}$. The top surface is exposed to a radiative heat flux of $q^{\prime \prime}=$ $3000\left[\mathrm{~W} / \mathrm{m}^{2}\right]$, which is fully absorbed at the top surface. In addition, there is convective heat transfer with a fluid at temperature $T_{\infty}=20^{\circ} \mathrm{C}$ and the convective coefficient $h=40 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$. Determine the temperature at the interface between the film and the substrate, T_{1}. The thickness of the film is $a=0.2 \mathrm{~mm}$ and the thickness of the substrate is $b=1.0 \mathrm{~mm}$. Thermal conductivity of the film k_{f} is $0.02 \mathrm{~W} /(\mathrm{m} . \mathrm{K})$, and the thermal conductivity of the substrate k_{s} is $0.06 \mathrm{~W} /(\mathrm{m} . \mathrm{K})$. (10 points)

2. For solving a 2-D transient heat conduction problem, a node, T_{o}, is placed on the corner as shown in the figure below. There is a uniform internal heat generation in the solid, with a volumetric heat generation rate $q^{\prime \prime \prime}\left[\mathrm{W} / \mathrm{m}^{3}\right]$. The right surface is exposed to a flowing fluid at temperature T_{∞} and convective coefficient is h. The bottom surface is thermally insulated. Using the first law of thermodynamics, derive a nodal equation for T_{o} in an explicit scheme in terms of the temperature of surrounding nodes, h, T_{∞} and $q^{\prime \prime \prime}$, as well as the properties of the solid, k, ρ, and C. Determine the stability criterion for this scheme. Assume $\Delta x=\Delta y$, and the unit depth. (10 points)

3. Consider the metal link on a fire sprinkler head. It is a rectangular parallelepiped of thickness L, length a and width a. Assume and then justify that it can be treated as a lumped system. If the link, at an initial temperature, $T_{i}=20^{\circ} \mathrm{C}$, is suddenly exposed to the fire gas at $T_{\infty}=300^{\circ} \mathrm{C}$, with a constant convective heat transfer coefficient, $h=30$ $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~K}\right)$, how long will it take for the link to reach $297{ }^{\circ} \mathrm{C}$. Neglect radiation. The thermal conductivity of the metal link $k=400 \mathrm{~W} /(\mathrm{m} . \mathrm{K}) . \mathrm{L}=2 \mathrm{~cm}, a=0.6 \mathrm{~m} . \rho C=3 \mathrm{x}$ $10^{6} \mathrm{~J} / \mathrm{m}^{3}-\mathrm{K}$. (10 points)

