CS 61A, Spring 97

Midterm 1

Professor Harvey

Problem \#1 (7 points):

What will Scheme print in response to the following expression? If an expression produces an error message or runs forever without producing a result, you may just say "error"; you don't have to provide the exact text of the message. If the value of an expression is a procedure, just say "procedure"; you don't have to show the form in which Scheme prints procedures. Assume that no global variables have been defined before entering these expressions, except where noted.

```
(se '(+ 2 3) (+2 3))
((lambda (x y z) (+ x 5)) 6 7)
; from ex. 1.32, p. }6
(accumulate se 0 (lambda (x) x) 3 (lambda (x) (+ x 1)) 5)
((if 3-*) 23 2)
(abc)
(let ((a 5) (b (+ a 3))) (* a a ))
((lambda (f) (f f)) (lambda (f) f))
```


Problem \#2 (2 points):

True or false?
A theta $(n \log (n))$ algorithm is, for all large enough n, slower than a theta ($\mathrm{n}^{\wedge} 2$) one. \qquad
For small size inputs the theta order of an algorithm helps predict running time. \qquad
Function f below defines a linear iterative process:
(define (f abc)
(if (> ab)

$$
\stackrel{\mathrm{c}}{(\mathrm{f}(+\mathrm{a} 1)(-\mathrm{b} 1)(+\mathrm{c} 1))))}
$$

Function g below defines a linear iterative process:
(define (g abc)
(if (> ab)
c
$(+c(g(+a 1)(-b 1)(+c 1)))))$

Problem \#3 (10 points):

Write a function stutter that takes a word w and a number n and produces a function. This function takes a sentence s and for EVERY recurrence of the word w it reproduces it n times.

For example

(define porky (stutter 'th 3))
(porky '(th thats all ffolks))
evaluates to (th th th thats all folks). You may need to define a helper function, too.

Problem \#4 (8 points):

```
(define (ss k)
    (define (tt k r)
        (if (empty? k)
            r
            (tt (bf k) (se (first k) r))))
    (tt k '(d)))
```

Write out (or "trace") the succession of calls to ss and tt , and their return values as Scheme evaluates the expression (ss '(a b c)).

Is the process traced out with $\mathfrak{t t}$ linear iterative?
Problem \#5 (12 points):
Sometimes you want to reduce a collection of elements by operating on them in pairs, starting from the
right, and given an end-value when there is only one element left. For example (reduce $\left.+{ }^{\prime}(256) 0\right)$ is meant to compute $(+2$ (reduce '(56) 0)) which is, in turn, equivalent to $(+2(+5$ (reduce '(6) 0))) which is $\left(+2\left(+5\left(+6\left(\right.\right.\right.\right.$ reduced $\left.\left.\left.{ }^{\prime}() 0\right)\right)\right)$ which is $(+2(+5(+60)))$ or 13 .

You may need a few extra "helper" procedures to complete these programs. Use the reverse of this page if you need more space.
A. Define the procedure (reduce fse) illustrated above that takes as its argument another procedure f, a sentence s, and an end-value e. Procedure f should take two arguments.
B. Use reduce to reverse the order of words in a sentence. That is, define a procedure reverse-by-reduce that given (hello good bye) returns (bye good hello).
C. Use reduce to find a word with the largest number of letters in a given sentence. That is, define a procedure longest that given (two three five) returns three.
D. Use reduce to find the minimum number in a given sentence r. That is, define a procedure minimum that given $(0-50030)$ returns -500 . If r is empty, return the word error.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu

