
CS 162, Midterm #2, Fall 2000

CS 61A, Summer 2000
Midterm #1 (Sole midterm)
Professor Allison Coates

Problem #1 (5 points):

Give the commands necessary to perform the following tasks.

(a) Emacs

1. Load the file ~cs61a/lib/foo.scm into an Emacs buffer.

2. Start a Scheme buffer and load ~cs61a/lib/foo.scm into that buffer.

(b) Unix

1. Change into your home directory. Confirm you are in your home directory

2. Create the directory sols. Copy all the files from ~cs61a/sol into sols.

3. Confirm the files are in the sols directory.

Problem #2 (10 points):

What will Scheme print in response to the following expressions? If an expression produces an error
message or runs forever without producing a result, you may just say "error"; you don't have to provide
the exact text of the message. If the value of an expression is a procedure, just say "procedure"; you
don't have to show the form in which Scheme prints procedures. Assume that no global variables have
been defined before entering these expressions (other than the predefined Scheme primitives), except a
and b

(define a 'goodbye) (define b 'hello)

(let ((a 'hi)
 (b a))
 (list a b))

(let ((a 'hi)

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (1 of 7)1/27/2007 6:29:50 PM

CS 162, Midterm #2, Fall 2000

 (list a (let ((b a)) b)))

(((lambda (one)
 (lambda (two)
 (list one two 'three))) 'a) 'b)

(let ((x 3)) (lambda () x))

Given each Scheme printout:

(a) Draw a box and pointer diagram representing the structure.

(b) Give an expression using only cons and list that would create the structure.

(c) Provide a scheme expression to retrieve the number 3 from this structure.

> foo
((1 . 2)((3) . 4) 5)

> bar
(1 (2 3) 4 ((5)))

Problem #3 (10 points):

For each of the following statements, indicate whether the statement is true or false by circling the
appropriate response. Also, explain in one gramatically [sic] correct Enlish [sic] sentence why each
statement is true or false.

(a) A function that returns a pair containing one answer in the car and one answer in the cdr is non-
functional because it's returning two answers. true / false

(b) In general, when adding new functions to existing objects, message-passing style is more
convenient than generic operations with explicit dispatch. true / false

(c) In general, an iterative process and recursive processes for the same algorithm share the same order
of growth with respect to time complexity. true / false

(d) Given the following definitions:

(define (mystery1 n)

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (2 of 7)1/27/2007 6:29:50 PM

CS 162, Midterm #2, Fall 2000

 (- n 100))
(define (mystery2 n)
 (+ n n))
(define (mystery3 n m)
 (+ n m))

Exactly two of the following expressions perform differently under normal order than under applicative
order. true / false

> (mystery1 (rand 23))
> (mystery2 (rand 56))
> (mystery3 (rand 4) (rand 4))

Problem #4 (4 points):

Write a function palindrome? that takes a word and returns whether it is spelled the same
backwards as forwards. (Note "" is the empty word.)

> (palindrome? 'radar)
#t
> (palindrome? 'hellowthere)
#f
> (palindrome? 'amastergermregretsama)
#t
> (palindrome? "")
#t

Problem #5 (points):

Welcome to the University: a magical land of mystery and wonder. In the University live students,
who are identified by their department and SID. The constructor make-student takes a department
and an SID and creates a new student:

(define (make-student dept sid) (attach-tag dept sid))
(define (getdept student) (type-tag student))
(define (getsid student) (contents student))

> (define rob (make-student 'psych 14000000))
rob
> (define lai (make-student 'cs 13000000))
lai

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (3 of 7)1/27/2007 6:29:50 PM

CS 162, Midterm #2, Fall 2000

In the University also live a magical sect of people, the professors. The professors perform
examples for all students who possess the correct department.

A professor is a procedure that takes three arguments:

1. a student asking for help
2. a procedure of one argument to perform
3. a list of examples to be computed

Professors return either a list of solutions or 'sorry if the student is in the wrong department. The
constructor make-professor takes a department and creates a new professors:

> (define cs-professor (make-professor 'cs))
cs-professor
> (cs-professor lai (lambda (x) (+ x 1)) '(2 3 4 5))
(3 4 5 6)
> (cs-professor lai square '(1 2 3 4))
(1 4 9 16)
> (cs-professor rob square '(1 2 3 4))
sorry

Write the procedure make-professor.

Problem #6 (points):

Sometimes when you download a file from the World Wide Web, it will come in compressed form.
When you download such a file, you will have to decompress it if you want to make use of it.

We could also compress and decompress lists. For example, a list such as:

(vertigo vertigo psycho rearwindow rearwindow psycho)

is compressed into:

((2 vertigo) (1 psycho) (2 rearwindow) (1 psycho))

Each element of the compressed list is called a run. (2 vertigo) and (1 psycho) are examples
of runs. Each run tells us how many times in a row a particular symbol appeared in the original list.

A run is a new abstract data type that we are inventing for this problem. A run consists of a symbol
and a count of the number of times it appears consecutively. The constructor for a run is called

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (4 of 7)1/27/2007 6:29:50 PM

CS 162, Midterm #2, Fall 2000

makerun and the selectors are getsymbol and getcount.

Here is how we could create a compressed list:

> (define mylist (list (makerun 'vertigo 2)
 (makerun 'psycho 1)
 (makerun 'rearwindow 2)
 (makerun 'psycho 1)))
mylist
> mylist
((2 vertigo) (1 psycho) (2 rearwindow) (1 psycho))

(a) Define the following constructors and selectors for runs:

makerun ; takes a symbol and a count, and returns a new run

getsymbol ; takes a run and returns the symbol

getcount ; takes a run and returns the count

(b) Write a function decompress that decompresses a compressed list. Use your constructor
and selectors from part (a) where appropriate.

> (decompress mylist)
(vertigo vertigo psycho rearwindow rearwindow psycho)

(c) Suppose that we decide to change the way that a compressed list is represented. If a symbol, say
psycho, only appears once, then it may be redundant to represent that run as (1 psycho). Instead,
we want to be even more economical, and represent it simply using the symbol psycho all by itself.

Your task is to modify the constructor and selectors from part (a) such that they are consistent with this
new representation.

> (define mylist (list (makerun 'vertigo 2)
 (makerun 'psycho 1)
 (makerun 'rearwindow 2)
 (makerun 'psycho 1)))
mylist
> mylist
((2 vertigo) psycho (2 rearwindow) psycho)

makerun ; takes a symbol and a count, and returns a new run

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (5 of 7)1/27/2007 6:29:50 PM

CS 162, Midterm #2, Fall 2000

getsymbol ; takes a run and returns the symbol

getcount ; takes a run and returns the count

If the decompress function you wrote in part (b) does not work with this new representation, you
should return to part (b) and modify it so that it will work with both representations.

Problem #7 (points):

You've been abducted to the planet Smoo and asked to rescue Prince Froptoppit from the killer trees!

The killer trees of Smoo are implemented as list structures. To save the prince, you must search through
the list structure and find his depth in the tree.

An element's depth is defined as the length of the path from the root to the element. For example:

 +
 / \
 + d ; depth 1
 / \
 + c ; depth 2
 / \
a b ; depth 3

Write a function find that will take a list structure and return either the depth of 'prince in the
structure or #F if 'prince is not in the structure. You may assume that 'prince does not appear
more than once in the list structure.

> (find '(akiko (gax) (spuck (beeba))))
#F
> (find '(monster prince monster))
1
> (find '(monster akiko (spuck monster monster prince)))
2
> (find '(alia (poog (monster monster prince)) monster))
3

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (6 of 7)1/27/2007 6:29:50 PM

CS 162, Midterm #2, Fall 2000

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact mailto:examfile@hkn.eecs.berkeley.edu

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Summer%202000%20-%20Coates%20-%20Midterm%201.htm (7 of 7)1/27/2007 6:29:50 PM

mailto:examfile@hkn.eecs.berkeley.edu

	Local Disk
	CS 162, Midterm #2, Fall 2000

